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1BSTHÄCT 

The non-linear alasto-plastic rasponses of a submerged 
cylindrical shell to an underwatec shock wave have been 
investigated. Using    the      EPSA     (Elasto-Plastic       Shell 
Analysis) cade, the gross responses of homogeneous and 
ring-stiffened shells wers evaluated. The ralavant parame- 
ters have been displayed and evaluated using PATBAN-G color 
graphics systam. An interface modula was developed between 
EPSA and PATHAH-G . The deformations and von Mises stresses 
throughout  the  shell  have been  gualitatively  evaluated. 
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I-   ISTROD0CTI3M 

A.       GENERAL   PRESENTATION   OP   THE   PHENOHENA 

Great progress has been made ia the static and dynamic 

analysis c. complex structures through the continued devel- 

opment of discrete element methods of structural analysis. 

Tremendous iiprovements in computing power ha"? made 

possible the study   of fully   nonlinear   problems. 
The analysis of the response of a structure submerged in 

a fluid, is severely complicated by the intrusion of signif- 

icant fluid-structure interaction effects. Recently, the 

development of a variety of surface interaction approxima- 

tions has provided the means for a more efficient analysis 

of the coupling between the structure and the surrounding 

fluid. 
Computer codes for structural analysis are veil* 

developed so that the fluid-structure interaction is, for 

the most part, handled by adding new capabilities to 

existing structural  analysis  programs. 
It is a well known fact that the primary threat to a 

submerged structure is the shock wave that results from an 
underwater explosion. However, the complexity of the phys- 

ical phenomena involved, along with the difficulties encoun- 

tered in obtaining experimental results have been serious 
drawbacks for the analysis of these types of problems. But 
there is a definite need for investigations of large defor- 

mations and buckling problems in a structure submitted to an 

underwater  explosion. 

11 
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B.      OBJECTIVES 

This study deals with the nonlinear response of a 
submerged cylindrical shell to a saock wave. The existing 
finite element code EPSA (Elasto-Plastic Shell Analysis) 
[Ref. 1] which includes nonlinear affects and a surface 
interaction approximation was selected for the study. In 
order to alleviate the tedious intarpretation of results at 
points throughout the shell, PArKAN-G, a color graphics 
system, was used. PATRAN-3 allows for a global representa- 
tion of a quantity distribution over the structure rather 
than the discrete representation given by a computer output. 
Tha objectives of this study ware to merge the finite 
elament code EPSA with the color graphics system PATRAN-G, 
and to conduct an analysis of the response of various types 
of cylindrical shells to a spherical shock wave generated by 
an   -nderwater explosion. 

12 

-_ . '">»..>- 



f 

II. THE   EPSA   COSPOTBB   P 

A. PBESEHTATIOI 

T" 

EPSA (Elas to-Plastic Shell Analysis) [Bef. 1] is a 

computer program developed by Wsidlinger Associates and 

funded by DNA/NAVSBA/ONB for the purpose of the analysis of 

submerged stiffened shells under dynamic loadings. It incor- 

porates a number of specific featuras which are geared for a 
more  efficient  analysis. 

In particular,   EPSA  allows: 

-The   analysis of shells in  an acoustic medium,    subjected to 

both   low and high freguency   shock loadings. 

-An  efficient modelling of  the elasto-plastic behavior 
-The     inclusion  of     large    displacement    effects  to    analyze 

dynamic buckling situations  and post-buckling behavior. 
-The  modelling  of stiffeners and  internal  structures. 

-The   fluid-structure interaction   effect 

The following sections describe the eguations of motion 

for a submerged structural shell in an infinite fluid 

sujected to a pressure loading and investigate the modelling 

of the surrounding fluid. The last sections are devoted to 

the finite element discretization as well as to specific 
features concerning   EPSA. 

B.      EQUATIONS   OP   HOTTON   FOB   THE  SHELL 

Considering a thin shell of thickness h , volume V, area 

B submerged in an infinite fluid (figure 2. 1) . The shell 

stress resultants are defined  from the stress tensor by : 

13 
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•A. /•> 
t 11 dt       and M^j —  .    v^ 

<h/2 4/2 
The  distribution    of  strains  (31:L'

e
22»e12)     -s assua,3!ä 

linear,   the curvatures at  aid-height   are   (^ly^^^ii   • 
to   be 

Figure  2.1       Shell  Stress State. 

Applying the principle of virtual  warfc gives: 

f{s}T{5e}dR = f {p}T(6u}dR -    / p («?($") 
JR J R "'R 

dfi (2.1) 

Hhare 

{ula(u1#u2»w )T is the displacement vector at  each   point 

{s} • (Nn,N22 »N12#H11  »M22#Hi2 )T      I«    the stress     resultant 
vector 

(Ql = («ll»e22 f*\l\\   'k22'2kl2,T      is     the  strain     resultant 
vector 
p is   the mass per  unit area   for the  shall. 

The  symbol   5    will  refer to  a virtual quantity,     and the dot 

or  star  denotes  a  differentiation  with  respect to   tine. 

14 
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Tha first tera of equation (2.1) represents the virtual work 

of internal forces , the second rapresents tha virtual work 
of external forces (i.e. pressure, point loading, etc), and 

the third one represents the contribution of inertia forces 
in the virtual work. Thus, this last term expresses the 

effects of  dynamic   phenomena on tha  structure. 

C.      FLO 10   MODELING 

In the case of a submerged structure, the external 

forces are the pressures applied at the fluid-structure 

interface. 

äs the shock wave hits the stucture it gets reflected, 

thus inducing a pressure term pr . In addition, the motions 

of the shell will also generate a radiated wave, with a 
pressure contribution pr4 

Therefore, the pressure at tha fluid structure interface is 

the  sum  of  the  incident,  reflected and radiated  pressures: 

P      •   Pi   •   Pr   •   Pra (2.2) 

Where 
p    =  Total  dynamic  pressure. 
p,. • Pressure associated with incilent free fiald pressure 
wave. 
pr = Reflected pressure due to the interaction of the inci- 
dent wave with the structure, the structure being fixed and 
rigid. 
pra=     Radiated  pressure due  to    the  normal  movements    of the 
surface of the  structure    in    the fluid 
Ps*   Pr*  Prais called the scattered pressure. 

The methods   for    getting    the  scattered pressure    Pg will 
now     be investigated. Assuming    a     spherical  wave     in    an 

15 
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acoustic medium    with a    sound speed     c  ,       the  pressure    is 

determined   by the  well known  wave  agnation: 

CVP  .  g (2.3) 

and the    proper  conditions    at the    boundaries of     the  fluid 

doaain  . 

One alternative for solving the previous problem would 

be siaply to use a finite element discretization of part of 

the fluid doaain , imposing a radiation condition at the 
boundary [Ref. 2], However, this would require a very 

significant fraction of the computing effort that could not 

be devoted  to the structural modelling. 

Therefore,    a more  efficient way    of  computing the scattered 

pressure is required. 

The Doubly Asymptotic Approximation (DAA) imparts upon 

the structural model a surface loading composed of incident 

and  scattered waves. 

In the high freguency limit, it can be shown that the 
scattered nodal force vector (Fs} is related to the wave 
particle velocities normal to the structure's surface by 

CHeff.  3] : 

{Fs> [A]{US} (2.U) 

Where [A] is the diagonal matrix of nodal areas (areas asso- 
ciated with each node) and (0S) is the vector of nodal scat- 
tered normal velocities. Therefors, in this high freguency 

case the shock wave is simply a plane wave and eguation 

(2.4) states that the pressure is proportional to the fluid 

velocity. 

16 
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In the  low   frequency limit    tha  fluid  structure  interac- 

tion   is governed by  the relation: 

(K) a    Cav](Us} (2.5) 

«here {0„ JsrJU.) is the nodal nor aal acceleration vector • at    3 

and [ 1^ ] is the  added    mass   matrix computed  ia an  incompres- 

sible fluid. 

Thus, in the low frequency cass, the loading is due to 

the motion of the rigid structure in an incompressible 
fluid,   a problem typically   found  in hydrodynamics. 

ihen a broader range of frequeacies is considered, one 

can combine the two previous equations with the differential 

equation  governing  the scattered  prassure [Ref.   3],   giving: 

C * I*    (7S)   •    pcCHv ]*   {Fs>    *   PcC0b> (2.6) 

Mhare     (Ps }   = A (FS } 

Defining the vector  cf nodal scattered pressures   {ps}   by: 

{Ps}   =    [*J*   {Ps} 
we get: 

[HJ{PS>   • pc[A]{Ps}   = pcCMv](as} (2.7) 

which is the set of equations that gives the scattered pres- 

sure at each node of the wetted surface of the shell. 
Equation (2.7) gives exact results in both the high and low 

frequency limits. Thus, DAA allows the modelling of the 

fluid-structure interaction via a ooupled set of differen- 

tial equations at the wetted nodes of the structure instead 
of modelling the whole fluid with a finite element grid. 
The  use of    DAA   will free some  memory space    in  the  computer 

17 
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for a better modelling of structural behavior while at -he 

saae tine giving some reasonably accurate results for the 

loading of the  structure. 
Therefore, the equations for the study of underwater 

shocks will consist of a coupled set of structural equations 

that coae fro« the Principle of Virtual Work and of fluid 

equations at the  wetted  nodes  that ;oae   fron   DAA   equations. 

D.       FINITE   ELEMENT   PROCEDURE 

1.     Discretization 

The principle of    virtual wark is rewritten    for the 

structure introduced  in  section  B [Bef.   1] 

|{s}T (56}dS  -J   (pf   {6u}dR   •/ p('uf{5u }dR     =   0 (2.8) 

The surface of the region is covered by a quadrilat- 

eral mesh of N elements," each having an area Ai . The 

previous integral can then be repLacad by a summation of 
integrals over   Ai . : 

I {s}    {Se}iH t   {S,Ti {56}i dH (2.9) 
i=l   A. 

The   integrations  over  A.  are    then  performed  by  dividing ths 
1       it 

element into four regions Ki     (figure  2.2)   We have then: 

f (sJi  {«5e}. dS     = £    {s}^ (5ekJi A\ 

-'A, k-1 

(2. 10) 

and  therefore equation   (2.9)   becomes   : 

]  [s? (6e}dR     »   £   £    <s>i  C«5ak)i   *f 
*R i»l   k-1 

Usinq  the same   procedure,  it can also   be derived   : 

(2.11) 

18 
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L {p}T(5u}    dR=   Y, Y,   •    f5uk Ai 
i=*l k=l 

• {P}   £«q) (2.12) 

i N      4 

p(u}T(Su}   dR=   £   £<u*i  {5ut 4=  [MHSH6^ (2.13) 
i = l k=l 

Whare [M] is the mass matrix , {?} is the vector of exter- 

nally applied forces, and {q} is the vector of nodal normal 
displacements for the structure. 

Figure   2.2      Srid Points  in  BPSA. 

By definition, finite eläment discretization can 

express the displacement {u} at any point of an alement as a 

function of the displacements at the corner points of the 
element,   defined by   (q)   . 

(U}      »   [H]    (q> (2.1U) 

«here [H] is a  6xt2   matrix  of interpolation  functions. 

Combininq the derivatives of   {uj   will qive  the strain  vector 

{e}.   In matrix  form,   equation   (2.U)   qives  : 

19 
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{9}    •      [B]    [q} (2. 15) 

Hhere [B] is a 6x12 matrix function of the geometry of the 
element as well as a function of the previous deformations 
in the case of  large displacements. 
Osing the previous result, equation (2.9) is rewritten in 
the   following way  : 

I {S)T{6e)    dR*   V   V  {s}^[Bk]i{5q}i l\*      {F}T  {6q} (2.16) 
l«lfc«l 

Where   {F}   is the  internal force vector. 

Combining the previous    equations in   equation   (2.8)        ,     the 
principle of virtual   work becomes: 

[H] (q) V (  (P)i   "     {Hi   l (2.17) 

i=l 

Therefore, the principle of virtual work has beea tranformed 
into a system of ordinary differential equations which are 
much   more amenable   to  numerical  treatment. 

In EPS&, each arbitrarily shaped quadrilateral 
element is defined by four corner nodes, each having three 
translational and no rotational degree of freedom. In order 
to represent the behavior in bending eight nodes not contig- 
uous with th9 element are also usad (figure 2.3). Every 
element accesses twelve nodes and has twenty degrees of 
freedom: three translaticnal degrees at the corner codes 
and one corresponding to the displacement normal to the 
surface for each of the eight exterior nodes. The bending 
behavior (second derivative term) is expressed in terms of 
the nodal displacements via a finite difference technique 
CH«f.   «]. 

20 
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Then the nodal    displacement   vector of element is 

simply: 

{q}    •  (u ,J  ,u. W • v/t »wi •   •    •   WJ ,w5#...w12)
r     (2.18) 

Conventional finite element codes utilize three 
translational and two rotational degrees of freedom at each 
node (each element has 5 4 = 20 d.o.f. as in EPS& ). However 
the masses associated with rotational degrees of freedom are 
very small, leading to numerical instability. The use of 
the aforementioned formulation alleviates this problem since 
only translations are considered and, in addition, the 
number of unknowns is reduced, leading to simpler and more 
efficient computations. 

It must be pointed out that in order to model the 
bending behavior at the edges of the shell, a set of artifi- 
cial nodes has to be created. The finite element grid will 
then consist of the nodes defined in the input file plus the 
artificial nodes along the boundary of the sheet 
(figure 2.3). 

2«     Strain,   Displacement   Relation 

The principle of virtual work deals only with 
strains. Since the finite element approximation gives the 
displacement at each point, the equations relating the 
strains to the displacements are needed. In this study, the 
Donnell-Vlasov nonlinear kinematic equations of shell theory 
are employed, and the strain-displacement relations are 
described in table  I. 

Using equation (2.15) in the equations detailed in 
the previous section will give the finite element approxima- 
tion  of  strains   in  terms of  nodal displacements. 

21 
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T1BLB   I 

Doanell-Vlasov   Shell   Equations 

3ul     .      1     3hl "1.2 
— u7 + F- • I *1 'll " h,3£, *" hxh2 3C2 

3u, 

2      R, 

3h. 
*2 1     W"2 v  + I * 2 

»22 " hlT +hThTäCUl+i:2-*2_ 
'2^2 

3u„ 

*1"2 '   : 

3u, 

*2 

3h, 3h. 
2e 

i2   i^Hj 

3*, 

h2<*2 
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h1#h2   are scaling  coefficients. 

3.     Shell.  ConsiitutiTe   Relations 

The shell constitutive relations relate the stress 

resultant rate vector to the shell strain rate vector. In 

aatrix tens: 
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{s}    =   [D]{3} (2. 19) 

Where [D ]  is the  Elasxo-Plastic tangent  stiffness   matrix. 

Pigare 2.3      Nodal Points  Organization. 

The stress-strain relation used in EPSA differs from 
the classical Elasto-Plastic theory in that the formulation 
involves shell stress resultants rather than stresses at 
points throughout the thickness of the shell. In other 
words, EPSA uses relation 2.19 integrated over the thickness 
of the shell. Thus, there is no need to compute the stresses 
throughout the shell, which results in a significant savings 
in storage space and procassing tima. However, the stress 
resultants N^-and n^. cf the shell theory are not sufficient 
to describe the state of stress, and certain higher order 
moments must be combined with the strass resultants to form 
the dynamic variables of the problem. The coefficients for 
the integrated constitutive equation have been determined 
using experimantal  results  [Hef.   5]. 
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Thase  constitutive  equations consist  of  a   yield  condition,   a 
strain hardening  law  and a   flow rule: 
-The   yield  condition  indicates  whether  part  of  the  shell  has 
started  to   yield.      (figure   2.4) 
-The   strain hardening law gives the  evolution  of   stresses  in 
the  shell after   plasticity   is reached. 
-The   flow     rule   gives the  plastic     strain  rate  ii     the  shell 
after plasticity. 

b/2* 1 

> 

°yield J 
^ 

V2 

^ 

al 'ield 

Figure   2.1       Yield   Situation  in  the  Shell. 

H.     Solution  Procedure 

EPSÄ uses an explicit central difference scheme to 
solve the virtual work and fluid loading equations detailed 
in section B. As indicated in appendix B, the explicit time 
integration procedure requires a small time step and is only 
conditionally stable. However when stable, it always 
converges to the exact solution, as opposed to implicit 
schemes that are unconditionally stable but may lead to 
unrealistic rasults. Furthermore,in problems involving the 
treatment of shocks, accuracy requirements preclude the use 
of large time steps. The central difference scheme seems, 
therefore,   particularly optimal. 
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Assuming we know the solution at tiae t »the central differ- 
ence scheme applied to equation (2.17) gives the solution at 
time   t*At   : 

{V}. 
fctAt 

CV}i  •    ht_ ((PJi 
Mi k=l 

(2.20) 

Where  Mi is    the  mass of  node     i  ,      {P)i    are    the   externally 
appied  forces     and   {F}     are   summed     over  all ths elements k 
framing  node i. 

The  formulation  of     the  equations  is in the   initial 
configuration and    all equations  are     solved in the  initial 
geometry in  accordance with   the total  Lagrangian formulation 
[aef.  6]. 

/ 

E.      BFSA   CAPABILITIES 

The structure to be analyzed is conceptually divided 
into constitutive parts called "sheets." Each sheet is a 
curved section of a shell with an arbitrary number of nodes 
and elements (figure 2.5) Its shape is limited to a surface 
that can be described by a smooth continuous function 
without discontinuities in its slope. The elements within 
the sheet are limited to a rectangular organisation (figure 
2.5) . 

Thus, a cylinder with end caps would consist of three 
sheets: a oylindrical    sheet     and   a     sheet     for  each     end 
(figure   2.5). Three sheets    are  required     because  of     the 
slope discontinuity at the edge between the cylinder and the 
end   caps. 

Dividing the structure into shaets isolates the diffi- 
culties associated with the boundaries into a set of artifi- 
cial nodes along the perimeter of the sheet. when several 
sheets are required ,EPSA takes care of the compatibilities 
of   displacements,   rotations  and  moments  along  the   edges. 
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Figure  2.5       Sheet Organization. 

Thus, any arbitrarily-shaped structure can be analyzed 
using EPSA  by dividing it into a  number of  sheets. 

Two options for choosing elements are available in EPSA. 
The first option exists to employ a generalized guadrilat- 
eral element. The second option exists to employ a rectan- 
gular element and uses a 3pecializad formulation for this 
type  of element. 

The coordinates which can be aither cartesian or cylin- 
drical always lie within the plana of the sheet. The z 
direction lies in a positively outward direction normal to 
the sheet. Each sheet contains its own local coordinate 
system, there is no global coordinate system when multi 
sheets are  merged   (figure 2.6). 

Prior to generating a finite aleaent mesh for a shee«: 
one must establish the side numbers of the sheet. The side 
numbering scheme is arbitrary as to the choice of sheet 
number one. However the specification of sides 1 to 4 must 
proceed in    a counterclockwise direction    when the    sheet    s 
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Figure  2.6       Coordinate System. 
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viewed from the positive z direction. At the intersection 
of side 1 and side 4, element 1 is first defined. Then the 
rode/element number is incremented by one until it reaches 
side 2. Then it returns to side <* and continues the count 
for  the next row of   nodes/elements. 

Thanks to the exclusive use of quadrilateral elements 
and to the specific numbering procedure, the table of 
connectivity is implicitly defined »hen generating the nodal 
points, thus simplifying considerably the input require- 
ments. 

The inclusion of structures internal to the cylindrical 
sheet is enacted in EPSA through the use of internal sheets. 
Structures internal to a cylinder are therefore modelled as 
individual sheets having the same capabilities as any 
general  EPSA sheet. 

Two types of internal structures   are available: 
-Sheets   (beams,     plates or   shells)       whose connection to the 
cylindrical shell lies parallel to the axis of the  cylinder. 
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-Sheets (beams, plates, shells) whose connection lies in the 

circumferential   direction of the  cylinder. 

Furthermore,in order to model internal equipment 

(machinery, etc ) which does not deform but contributes to 

the nertia of the syst sm, concentrated masses can be input 

at  a .dal points. 
The user aust be awar* that the previously discussed DAA 

is only isplemented for cylindrical stuctures. Prior to the 
finite element analysis the user must compute the added mass 

(virtual mass) matrix defined in aquation (2.tt). This is 

done by using the ACCESION program, which creates a virtual 

mass file that EPS A reads when computing the flu id-structure 

interaction. 
Finally, EPSA in its latest version takes local cavita- 

tion into account. when the total pressure computed by EPS& 

is found to be negative, it is simply set to zero since 

water cannot withstand any   tension. 

P.       USING   EPSA 

The input file for EPSA can be generated either 

directly, or via the interactive program PBEPSA that prompts 

the user to give the input data . »hen the input file is 

created,   all the data are in free  format. 
The nodal points can be generated semi-automatically 

(see the user's manual), and this option is very helpful and 

time saving when generating big models. EPS& can be run 

interactively for small models or on batch for bigger jobs. 
For instance, a cylindrical shell with 1«u0 elements and 

1517 nodal points takes 0.0 129 sec. of VAX CPU per time step 

per element. The whole model would take about half an hour 

for   100  steps. 

EPSA creates an output file in which all input data is 
echoed,   and outputs  the  pressures,   stresses,   strains,  veloc- 
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itias,    displacements at    the nodal  points  requested     by  the 
user  in the input deck. 

The value of the tine increment  At should be  selected so 
that   : 

A*    *     V2 5min( P/B) (2.21) 

flhere<5   .is the    smallest distance between  the    midpoints of min 
opposite sides of an element, for all elements of the sheet 
(figure 2.5), and 1/2 is a safety factor. In other words, 
the time step increment has to be less than the time taken 
by a wave to propagate from an element to another. In equa- 
tion   2.21,   (E/p)     is  simply   the wavs  speed in the  material. 

The virtual »ass array (VMA) is created on unit 20, 
therefore one should not use this unit for any other purpose 
than   READ operations. 

Because of the simple organization of its input file, 
EPSA has been found fairly easy to use. The user can perform 
major changes in the model very quickly and efficiently. The 
ACESION modula has been found to work well except for cylin- 
ders of large dimensions (L=1400", D=2H0n) for which the 
size of the virtual mass array grows unexpectedely from a 
reasonable  4 blocks  to  190   blocks  of   VAX  memory size. 

However, EPSA has been designed for some specific types 
of fluid-stucture interaction analysis and its limitations 
should be pointed out: 
- Only beam type stiffeners   can be considered 
- The fluid structure interaction is only enacted for a 
circular cylindrical sheet, which takes away much of the 
flexibility the   program. 
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III.    BPSA/  gATRAH-G  INTERFACE 

1.      INTRODOCTIOM  TO   COLOR  GRAPHICS  STSTEHS 

In dealing with the responss of a structure to a 

loading, quaatities such as stresses, strains, velocities 

and displacements must be analyze! at a number of nodal 

points, which makes the interpretation of computer outputs 
very tedious. Color graphics systems offer an effective 

solution to this problem by providing a global representa- 
tion of a quantity distribution cvar a stucture rather than 

a discrete representation given by a computer output. A 

color graphics system consists of an interface between the 

computer, the user and the color terminal. A typical system 

would be a software package that allows the user to create 

models on the screen as well as to display any data in terms 

of color intensity. It is known that a picture is worth 
several hundreds of words. Therefore, merging a finite 

element program with a color graphics system would be a 
major improvement in  engineering analysis. 

PATRAN-G [ Ref. 7] is a color graphics system specifi- 

cally designed for finite elements, it permits the engineer 

and the computer to work together towards the creation of a 
model. The designer creates an image on the screen and 

PATRAN automatically translates the physical model into a 
standard    finite    element input    deck. Another     important 

feature of PATRAN-G is its ability to assist the user in the 

interpretation of results through its post-processing facil- 
ities which include: the deformed geometry with magnified 

deformations,the color coding of elements based upon any 
response parameters such as displacements, stresses and 
strains.     In particular,   the contour   levels of the 
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aforementioned quantities can be superimposed on a 

3-dimensional image of the model, tixus allowing for a global 

analysis of a complex structure. 

B.      HEBGIIG   EPSA  AHD   PATRAN-G 

As described in chapter I , the structures under study 

have fairly short EPSA input files. Furtherance, in this 
study dealing with fluid-structure interactions on a 

circular cylinder, only structures that consist of one sheet 

are  considered. Therefore,     because of the    simplicity  of 

both  the input   file  and the   stuctura   under  study,     there was 
no  need to  design a  module     converting  a PATRAN-G  model that 

is created on the screen into an E?SA  input file. 

The  remaining tasks   were the following: 

-Display th6 original finite elemsat model defined in the 

EPSA  input  file  on  the screen   (original geometry) . 

-Display the nodal points and alement results that are 

computed from EPSA  on the screen   (postprocessing). 

1•     Original Geometry 

The input of a finite element model into PATRAN-G 

can be done by creating a "neutral" file, as described in 

PATSAN-G teninology. The neutral file1 is intended to 

provide a simple link between PM3AN-G and the outside 
world. It is written entirely in 80 character card images 

and all the data is organized in siall "packets" of two or 

more    card  images. Each   packet    contains the    data  for    a 
fundamental unit of the model suctx as node coordinates or 

elements definition. Since our only purpose was to display 

the  original geometry of the structure,     a  limited number of 

^Additional  information  about neutral files  can be  found 
in  the PATHAN-G   user's manual [Ref.   7] 
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data   packets   (4)   was  to  be   created: 

-File title (packet 25) : two cards containing the user 
title. 

-Summary data (packet 26) : two cards containing the number 
of nodes, elements and the date and time at which the 
neutral file was created. 

-Node data (packet 1): contains all information concerning 
nodes: node number and coordinates in a global coordinate 
frame. 

-Element data (packet 2) : contains the connectivity table 
for  the  finite  element model. 

-End  of  file     (packet 99)      :  end-of-file cards. 

We have seen in the presentation of 3PSÄ in chapter I that 
the nodes are defined in a local, sheet-attached coordinate 
system, that artificial nodes are created along the edges of 
the sheet to lodel the bending behavior, and that nc connec- 
tivity table was input. Therefore, the translator module 
that  would   be created had to: 
-skip the set of artificial nodes and properly renumber the 
grid 
-perform a  change of coordinates for  all  local data 
-generate the connectivity  table. 

It was decided to employ a modular design in which 
each routine would perform a specific task. & modular design 
would allow further changes to be made guickly and effi- 
ciently by modifying only the relevant routines. The imple- 
mentation in EPSA was made using a series of "calls", thus 
minimizing the risk of interference with the finite element 
computations. 

The translator module craated was made of four 
routines: 

32 



^ 

-PRELIM :  computes the number  of  nodal  points,   the  number 

of elements and   displays the first two data  packets   (25,26) 

-SHEETF :     scans    through the    nodes,     skips     artificial 

nodes,  renumbers the  grid,     performs  the required  changes of 

coordinates and   displays the node data  packet   (3 1) 

-SHCONN :     scans  through  the nodas,     connecting each node 

to the elements  it  belongs   to    and displays the element data 

packet   (02)   on   the  neutral   file. 

-ENDNEU :  displays the end-of-file  packet   (99) 

2. Using the Translator Modul a 

The translator calls were iiplemented in the routine 

REPORT of EPSA. Any run of EPSA creates a neutral file on 

unit 19. The neutral file name is therafore FOR019.DAT if no 

"ASSIGN" statement has baen issue! prior to the computer 

run. The finite element model might than be displayed on the 

graphic terminal (Ramtek, Tektronix) via the neutral input 

mode of EPSA (see [Ref. 7] for more details). An example of 
finite element model output on Tektronix U01U is given on 

figure 3.1   . 

3. Implementation of Post processing. Capabilities 

Postprocessing capabilities exist to assist the user 

in the interpretation of computer results. It is simply a 

process of generating displays and reports based upon a 

combination of  geometry and  the results  of  an analysis. 
The results cf analyses ara transmitted to PATRAN-G 

for postprocessing via "neutral rasults files" as decribed 

in     PATRAN-G terminology. Unlike the    model neutral    file 

described in the previous section, results files are in 
binary rather than   in card  image  form. 
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Figure 3.1       Example of   Finite  Slenent  Hodel  Display. 

One can   distinguish   between  two  major kinds of  post- 
processing  displays':   deformed  geometries and  element 
guantities. 

a.     Deformed Geometry 

A displacement results data file reguired by 
PATRAN-G had to be created. Again, the module created had to 
skip the artificial nodes, perform changes of coordinates as 
well as to write the nodal diplaoements in the neutral 
results    file. The    displacement   results     data     file     was 
created in module NEUDISP. Its organization is given on 
table II. 

A small module PLOTDISP that decides at which 
time steps the results should be output was created. The 
"call" to PLOTDISP was implements! in module COMPOTE of 
EPSA. The averall structure of the translator module is 
presented on table  IV at the end of  the  chapter. 
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TÄBLB   II 

Organisation of  Displaceoaat  Results  Pile 

j    Column Content 

1 X displacement in global   coordinates 

2 T  displacement   in  global  coordinates 

3 2" " " 

U Displacement   normal to  the shell   without 
rigid  body mode. 

5 Velocity  normal  to  the  shell 

A sample    of deformed geometry    output on Tektronix    U014 is 
given  in figure   3.2. 

b.     Element   Quantities Postprocessing 

Any element related quantity can be the target 
of postprocessing. In general thesa types of quantities are 
the results of finite element computations supplied to 
PATRAN-G through the neutral element results file. The 
neutral element results file is different from the neutral 
displacements results file detailed in the previous section, 
however it shares a similar format \ Bef. 7], Element quan- 
tities such as stresses in local and global coordinates and 
von Hises stresses are computed in module NEtJSTRE whose 
overall  structure is  similar to NEUDISP   described  earlier. 
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Figure  3.2       Deformed  Geometry Output. 

The     organisation of    the neutral    element    results file    is 
given on table  III. 

As described in chapter I, SPSA does not compute 
thä stresses through the thickness of the shell. Instead one 
uses  the integrated  quantities  of  the  shell  theory [Bef.  8] 

»iff 
V2 

<?ij dt       and 
n 4y2 

h/2 

ij tdt 

One can expect the stresses on the shell to be 
maximum at the extreme fibers. NEUSTHE computes the von 
aises stresses at the top and bottom fibers and writes the 
maximum value in the neutral file. At the surface of the 
shall no shear stresses are involved. Assuming a linear 
distribution of bending stresses and a unifori distibution 
of  membrane stresses,  one can  easily   derive  : 
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The first term Df the previous aquation is the membrane 

force contribution, the second is the bending moment contri- 

bution. The von flises stresses are then computed using the 
well-known  relation: 

vm •VK -ai a2    *°2 ) (3.2) 

In a similar way to the displacements results 

file, a module PLOTSTRE that deriies whether or not to 

output the eLement results was created and called from 

COMPOTE. The overall structure of tie translator is given on 

table IV. 

• 

TABLE   III 

Organisation   of the leatral   Element  Results   Pile 

Column CflttSIS Descri pt^on 

22 stre, 1 Element local  stress,   direction  i 

23 stre,2 ii                     n                  it                        "               i 

25 stre,u Element global  stress,   direction x 
26 stre, 5 II                           If                                II                                         11                  y 

27 stre,6 Element global  shear,   direction xy 

31 von von  Hises  stress 

—i« 
.   _   _   .            .    . 

37 

- 



c.     Displaying the   Results Quantities on  the Screen. 

The EPS A input deck has been modified so as to 
create the results files (displacemants, elements) required 
by PATRAN-G. At the end of the second input card the user 
specifies the number of displacement results and the number 
of element results files to be oreated (at least one). 
Obviously, those two inputs are also in free format. The 
neutral results files (elements, displacements) will be 
generated at equal time intervals as the computation 
proceeds. The results corresponding to the last time step 
are  always output. 

The element results file is created on unit 16 
and the displacement results file on unit 18, thus corre- 
sponding to files FOfi016.DAT and FDH018.DAT respectively. A 
new version of those files is created each time an output is 
requested. 

If five (5) neutral element results files are requested on 

the input card of a run of 20 steps, five files FOR016.DAT;1 
to POB016.DAT; 5 will be created, corresponding to time steps 
u to   20  respectively. 

Por the displaying of elament and nodal points 
results, the user will refer to [Kef. 7] section 20. The 
title of the run (first card of EPSA input deck) will be 
displayed on the screen along with the time at which the 
results  have been  requested. 

38 

•«. _» 



' 

TABLE   IT 

Structure of the Translator 

V 

CALL   PLDTDI 

no   cutout 
requested 

S?(  »     -out 

I 
I 
! 

put  reguested- 

CALL   PLOTS THE!-*—output   requested 

no  output 
requested 

computation 
proceeds 

il (CALL PRELI 

ICALL SHEETFj 

ICALL SHwONN 

ICALL ENDUE U| 

CALL   NEUSTRE   I 

j sea ns through| 
jthe elements-l 
jchange coori j 
(inates- j 
I compute Ton- j 
JMises stress l 
I-display | 
element j 

(results I 

'"1 ' 
RETURS 

—CALL   NEUDIS? 

• f 1 j scans   throuah   I 
jthe   grid- 
jchanges  coor-   | 
I dinates-find     j 
jnode   with  max 
|deformation- 
I display  first 
card- 

I I 

scans   through   | 
jthe  grid- 
jdispiay  nodal 
(results 

I 
RETURN 
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I?.   DESCRJPTIjOH  OP   TJE  ÖHfiBaBiTEH   EIPLOSIQH 

A.      PHESEITATIOI 

An explosion is a chamical or nuclear reaction in a 

substance (water) that converts aa original material into 

other products plus a significant amount of energy. The 

process of the explosion produces very high temperatures and 

pressures and occurs with extreme rapidity. As the result of 

the explosion, the initial mass of explosive becomes a very 

hot mass of gas at tremendous pressures; it is then obvious 

that   these  conditions will  affect  the   surrounding  medium. 

The fact that the water is compressible leads to the 

conclusion that the pressure applied at some location in the 

liguid will propagate through it as a wave disturbance 
[Eef.   9]. It     must    be  pointed     aut    that     the     pressures 

involved in an underwater explosion are usually so large 

that the wave velocity cannot be assumed independent of 

pressure. Thus, the small amplituda wave theory detailed in 

[Ref. 9] does not apply aad this will be the source of many 

complications in  describing  the behavior of the shock  wave. 

The first cause cf disturbance to the water in an under- 

water explosion is the occurrence of the pressure step at 

the water boundary. Immediately upon its arrival, the pres- 
sure begins to be relieved by an intense pressure wave and 

outward motion of the water. Por explosives like TNT or for 
nuclear explosions, the pressure rise can be considered as a 
discontinuous step, and is then followed by a roughly expo- 

nential decay. The duration of the phenomenon is of the 
order of a few milliseconds (more for nuclear explosions) . 

Once initiated, the pressure disturbance is propagated radi- 

ally outward as a compression wave, also called a shock wave 

because of the  steep  pressure step at  its  front. 
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Close to the explosion, the velocity of the wave is several 

times the "acoustic" speed of tha snail amplitude theory 
(c*5000 ft/sec) ; but approaches this limit very rapidly as 

the   wave advances outward. 
The pressure level in the wave falls more rapidly with tha 

radial distance than what is predicted with the small ampli- 

tude theory, but approaches this behavior at large 
distances. 

B.      BOBBLE   EFFECT 

is a result of the explosion, the initial mass of explo- 

sives becomes a hot mass of gas at tremendous pressures. 

Aftar the priacipal part of tha shock wave has been emitted, 

the gas pressure is considerably daoraased but is still much 

higher than the equilibrium pressure. The water in the imme- 

diate region of the sphere or "bubble" of gas has a large 

outward velocity and the diameter of the bubble increases 
rapidly. The expansion cootinues and the internal gas pres- 

sure decreases gradually, but the motion persists because of 

the inertia of the outward flowing water. when the gas 

pressure falls below the equilibrium value, the pressure 
defect brings the outward flow to a stop and the boundary of 

the bubble begins to contract at in increasing rate. The 

inward motion continues until the compressibility of the gas 
reverses    the  motion. Thus,       the     inertia  of     the     water 

together with the elastic properties of the gas provide the 

necessary conditions for an oscillatory system. The oscilla- 
tions of the gas sphere may persist a number of cycles, ten 

or more oscillations having been datected in favorable 
cases. 

m 
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C.      SURFACE   EFFECTS 

In the case of explosions occurring at shallow depths, 

surface effects will complicate the aforementioned sequence 

of events. When the shock wave hits the surface,the atmos- 

phere cannot supply appreciable resistance by compression. 

As a result, a reflected wave with a negative pressure 

satisfying the zero-pressure condition at the surface is 

formed (figure 4.1). Thus, the resultant pressure observed 
is the sum of the direct and reflected pressures. Therefore, 
the reflected wave arriving at point A will create a sudden 

drop of the pressure to a smaller value. This is known as 

the "cut-off" phenomenon, typical of free surface effects 

(figure  4.2). 

explosion 
bottom 

Figure  1.1       Surface Effect on a Shock Rave. 

D.       PRESSURE   DETERMINATION 

As detailed   in  a  previous  section,   the  pressure  decay at 

any   point is roughly exponential so that it can  be  written: 

Pt (A) P0(M   e tyO («.1) 
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It has been found that the fundamental descriptors cf an 

underwater explosion attack are the charge size (equivalent 
weight of TNT) and the charge standoff (shortest distance 

between charge and target). Theoretical developments about 

the spherical wave detailed in [Hef. 10] have shown that the 
peak pressure Pm at any point can bs reasonably approximated 

by: 

V3 V-J     Al 
Pm   =      KX(W   M1 (<*.2) 

where W    is the  charge    size in pounds of    TNT and  R    is the 
standoff distance in   feet. 

It  has been shown as  well: 

V3   V3    A2 =      K2H    (W  /R) 2 («.3) 

Ki'K2'*i '*2 are emPir^cali-y determined factors that depend 
on the type of explosives used. Their values for several 
types of explosives  are given on table V. 
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TABLE   7 
Explosion  Paraasters 

IIBX-1 Tf.'T PENT NUKc 

Pnjx                        K 22347.6 23505 24539 4.33X106 

Al I.M4 1.18 1.194 1.13 

b:cQY Constant  JU .056 .053 .012 2.274 

A, .247 .18b .257 .22 

B.      THE   EXPLOSIOH  IH   EPSI 

EPSA features two different  way  of describing  underwater 

explosions: 
-A discrete form in which the user inputs the pressure 

history at  a finite   number  of  times. 
-A functional form that uses equations 4.2 and 4.3 .Tha 

program requests then tha various coefficients and parame- 

ters  describing  the  explosion. 

r                    i 

in 
(C 

CD n 
ÜI 

\                                 ICHR6-I 

TCUT 1 

TIME (MSEC) 

Figure 4.3      Incident  Pressure Decay. 
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The presence of fraa-surface affects can also be 
accounted for with the input of a cut-off tiae after which 
the  incident pressure is set to zero   (figure   4.3> . 
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f.   AHALISIS   AMD  RBäSilS 

A.      H0DE1S   STUDIED 

In order to compare the results of the numerical anal- 

ysis with the experimental data, all attention was focused 

on the Explosive Power Meter (EPM> model for which field 

tests had been conducted. The EPM model is a stiffened 

cylinder with end caps whose dimensions are given in figure 

5.1   . 

5'-IO" 
TEST   COMPARTMENT 

•#• 

ttitftttf    it 
'I     23456     78     9    IO 

* FRAME 

3'-7" OUTER   DIA. 

I    «   < I ix n   <   i    »    »   « 

-{JJ— BOLTS 

_ ,^Si.ze\" 

JL II c" 
 , _l'-5 

I 7" I   To.259" 
FRAME SPACE 

END   RING 
if 

EPS A   MODEL (CROSS   SECTION) 

a   a   B I I D ' ' :T~rr 

OISC»ETt 
STirFtNt» 

11 I.I I I II I I ) 
•36 4T100 

Figure   5.1       Explosive Power   deter. 
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Rather than modelling the end caps with additional 
sheets , it was found to be mora efficient to take into 
account the behavior of the end caps using two rigid end 
blocks   (figure  5.1). The  effects of  the    explosion on the 
deformation of the end blocks is negligible compared to the 
deformation of points located outside of the end blocks. 
Therefore, it was assumed that the aotions of the end blocks 
were   pure rigid  body  displacements. 

In order to gain some insight iato the influence exerted 
by the stiffeners and the end blocks, a preliminary analysis 
was conducted on a ring stiffened cylinder without end 
blocks as  well  as on an unstiffened cylinder   . 

In addition to the study of the EPM model, the influence 
that the location of the stiffeners had on the deformations 
throughout the shell was evaluated. By performing a compara- 
tive analysis of the deformations, it was intended to mini- 
mize  and control the  damage   caused to the structure. 

The cylinders tested were subjected to an explosion 
occurring at the distance R= 200" from the cylinder. The 
location of the explosion was symmetrical with respect to 
the longitudinal and transverse axis of the cylinder (figure 
5.2) . Ä spherical type TNT explosion of intensity W=50 lb 
was selected for the study. It was therefore determined by 
the following parameters (chapter IV) : 
11 *   t. 18 12   » •• 185 
Ki -   22505       K2    •     • 058 

The symmetry with respect to the xy and yz plane has 
been taken advantage of by modelling one quarter of the 
model. After a certain amount of sensitivity analysis was 
performed on simple grids, a finite element grid consisting 
of 1517 nodes and 1440 elements was selected (figure 5.3) . 
Por each of the cylinders studied, the time step chosen was 
equal to    &t •     3.10**    s .   The explosion process  was studied 
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Figure  5.2       Explosion   Location. 

Pigure 5.3      PSH    Discretization  1517  nodes,   14*0   elements. 
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over a time interval of 800 tine steps, that allowed for a 

shock  and after-shock analysis. 
The displacements computed by EPSA consist of a combina- 

tion of rigid body displacements and pure deformations. The 
deformation modes are of significant interest since they may 

induce buckling and even lead to the destruction of the 
structure. As mentioned earlier, the very stiff end blocks 

have pure rigid body displacements. The displacement of 

each node of the end block was subtracted from the displace- 

ment of each node cf the corresponding row, giving the 
component of the displacement   due  to  pure  deformation. 

For each of the aforamentioned cylinders, the deformed 

geometry and the color-filled contour plots of von Mises 

stresses as well as normal displacement were displayed, 

using identical color assignments, the progressive gross 

evolution of the previous quantities were evaluated so as to 

allow for a comparative analysis of the evolution of phys- 

ical   parameters  throughout  the shell. 

Color-filled contour plots allow for a global representation 
of a guantity distribution and have been found extremely 

valuable in the   interpretation  of  tae  results. 

For printing and processing reasons, it was not possible 

to include color pictures in this document. Instead, the 

contour plots of the physical quantities under study have 
been   included. 

B.      AHALYSIS  OF   RIBG   STIFFBIBD   CTLIHDEHS   WITH   EHD   BLOCKS 

1.    2£fi Ü2ä§i 

The contour plots of von Mises stresses at time 

steps 20, 60, 100, 140, 180, 200 are provided on figure A.I 

to A.6 . As the shock wave hits tlie structure, it appears 

as if the stresses propagate through the shell and reach 

their  maximum value  fairly   quickly    in  50  time steps.     After 
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100 time steps, when the structure is fully enveloped by the 
shock wave, the region close to the end block becomes 
heavily stressed (figure A.U). in addition, some concentra- 
tion of stresses at the locations of the stiffeners can be 
seen (figure A. 5). At later time steps, the pressure becomes 
decreased and there is a relaxation of stresses. However, 
the region close to the end block as well as some spots 
located around tLe stiffeners remain heavily stressed, which 
may  indicate local   buckling   (figure  A.6). 

2.     Controlled  Deformations 

In crder to obtain a more uniform distribution of 
displacements, the stiffeners have been shifted towards the 
end blocks. The time history evolution of the displacements 
was studied over an interval of 803 time steps for the EPM 
model as well as for the model with shifted stiffeners 
called SPM2. The ccntour plots of normal displacements at 
time steps 200, 400, 600, 800 for both models are provided 
on  figure A.7 to A.14 

The EPH model shows a significant concentration of 
deformations occuring, even at late time steps (figure 
A. 10), indicating a possibility of buckling. Although unex- 
pected, the fact that the region close to the end blocks 
undergoes the most severe deformations has been confirmed by 
experimental data. A possible explanation to this phenomenon 
is that the inertia of the cross-section of the cylinder is 
relatively uniform along the cylialer, except at the end 
blocks where it jumps to a much higher value. This disconti- 
nuity in the inertia results in concentrations of stresses 
that  cause the aforementioned   phenomenon. 

The oross-section inertia of the EPH2 model 
increases more smoothly because of the distribution of stif- 
feners along its axis. Thus, the concentration of stresses 
has  a  lower magnitude and the    region  close to the  end  block 
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suffers less damage than in the EPW case. It can also be 

seen that the deformations are more uniformly distributed 
along the axis of the cylinder. Above all, the deformations 

at the late time steps are not as large, indicating that the 

chances of buckling are significantly lower for the EP32 

model   (figure A. 14) . 
Therefore, by performing an optimization of the 

location of the stiffeners, the designer can counteract the 

concentrations of stresses and tha buckling phenomena that 

occur in the region close to the eni blocks. It is believed 
that controlled deformations can have a very significant 

influence on the survivability of a structure submitted to a 

shock  wave. 

C.      AIALISIS  OP   OBSTIPPENED   AHD   HING-STIPPEHED  CYLIMDEH 

It was decided to study the progressive gross responses 

of an unstiffened cylinder as well as that of a ring- 

stiffened cylinder without end-blocks. Both cylinders have 
the same external dimensions as the 2PM model. The ring- 

stiffened cylinder is similar to the EPM model except for 

the fact that the end-block has bean replaced by a standard 

stiffener. The evolution of von Mises stresses at time 

steps 40, 80, 100 is provided in figures A. 15 through A.17 

for the unstiffened cylinder. The evolution of von Mises 
stresses at time steps 40, 80, 100, 150 is provided in 

figures A.18 through A.21 for the ring-stiffened cylinder 
without  end-blocks. 

Por the unstiffened cylinder it is observed that the 

stresses propagate quickly throughout the shell and that 

within a hundred time steps an instability phenomenon occurs 
showing the existence of local buckling (figure A. 17). At 

later time steps the buckling spreads over the entire stiff- 

ened  shell. 
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The evolution of von Mises stresses in figures A.18 
through A.21 shows that the ring-stiffened cylinder can 
withstand much higher stress levels than the unstiffened 
shell. This result was expected sinse the stiffeners provide 
the stiffness required to withstand higher loads. At time 
step 100 the unstiffened shell is already subjected tc local 
instability characterized by a "hard spot" in the middle of 
the model (figure A. 17) . On the other hand, the stresses in 
the stiffened cylinder are much more evenly distributed 
throughout the model, with high amounts of stresses concen- 
trated  around the  locatioas   of the stiffeners   (figure  A.21). 

It can also be observed that a significant concentration 
of stresses occurs at the extremities of the stiffened shell 
(figure    1.21). Recalling    that  the    end-block     has    been 
replaced by a standard stiffener, the cross-section of the 
shell has a greater inertia at the extremities due tc the 
fact that the two stiffeners located at the extremities are 
close to each other. Therefore this phenomenon is similar to 
the one encountered when studying the EPS model. However 
ths concentration of stresses for the ring-stiffened cylin- 
drical shell is less significant than for the EPM model, due 
to  a  smaller discontinuity  in  cross-section  inertia. 

52 



•**•" 

VI. CONCL0SI3N 

A FORTRAN module that merges the finite element code 
EPSA with the color graphics system PATRAN-G has beer, 
designed and succesfully completed. The non-linear elasto- 
plastic responses of various types of submerged cylindrical 
shells have been   evaluated   using  th2   EPSA/PATRAN-G  system. 

The analysis of the progressive gross responses cf a 
ring-stiffened cylindrical shell with end-blocks is believed 
to provide useful information regarding the behavior of a 
submerged structure subjected to an underwater explosion. 
The influence of the location of the stiffeners on the 
deformations has been studied and is also believed to be of 
significant help in the determination of an optimal design 
that will minimize the damage due to an underwater 
explosion. 

The utilization of the color graphics system in the 
interpretation of the results of analysis has been found to 
be an extremely valuable tool. It is the author's belief 
that the use of color graphics systems will become increas- 
ingly important in the analysis of complex phenomena such as 
underwater   explosions on  submerged  structures. 
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APPEHDII   B 

REVIEW   OF  NONLIIEAR   FIHITE   ELEHEITS 

i.      I1TBODOCTIOH 

This appendix is intended -co give the reader some 
insights into nonlinear finite elements. The reader is 
assumed to have some previous knowledge of finite element 
theory. The basic principles of the theory will be quickly 
reviewed, but the study will focus on the problems that 
occur    when dsaling     with nonlinear     theory. Most  of    the 
information has      been taken from    "Ref.  6] as wall    as  from 
the   course  the   author had at M.I.T.   with  K.J.   Bathe  in   1982. 

| 

B.      THE  SEED FOR  &   MBH THEORY 

Considering a coordinate frame defined by (i,j,k), a 
body of volume V in which point A(xL,x2,X3) is subjected to 
the displacements (ulru2 fa3), corresponding to a strain 
vector     (e}    (figure   B.1). 
In the following sections, the superscripts 0 and t will 
refer to the body at time 0 aad t respectively, the 
subscripts 0 and t will refer to the configuration at time 0 
and    t respectively. This chapter,       for    the  purpose    of 
simplicity, will first deal with the static nonlinear anal- 
ysis  of the material. 

In the linear theory of finite elements, one uses the 
well known Cauchy stress tensor T^ associated with the 
engineering strain  tensor e^^ ~i[^ *   3^1 . 

Then,  the principle  of virtual  work is  written: 
where fcR represents    the virtual  work  of     externally applied 
forces and 6e is a   virtual   strain. 
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Figure B.1  Saoaetric Conventions. 
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(B.1) 

Equation (B.1) is then discretized aver the body and becomes 

a set of integrations over each of the finite elements. In 

the case of a large displacement, the volume of the body 

over which the integration is performed might have signifi- 

cantly changed. Also notice that aquation (B.1) is written 

in the original coordinate frame (defined at t=3) and that 
r^ and e^ refer to the current configuration of the body. 

The Cauchy stresses at time t* a t cannot be obtained by 
adding an increment due to the straining of the material to 

the stresses at time t . The rigid body rotation of the 

material has to be taken into account since the Cauchy 

stresses vary under rigid body motions. Therefore, we must 

perform the integration of equation (B. 1) over the unknown 

current volume with respect to the oriqinal geometry that 
could  be significantly different   from  the current  one. 

The above discussion emphasizes the need for a new set 

of stress and strain tensors that would alleviate the afore- 

mentioned problems and enable the integration of the prin- 
ciple of virtual work to be  performed. 
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C.      DEFINING  SEW   STRESS   AND   STRAIN   TENSORS 

1.     Green-Lagy§nqe Strain Tensor 

The structure introduced earlier is considered and 

two points & and B at t=0, of coordinates0* (°x) , °3(°x) 

are defined . it tine t, the body has been deformed and A 

and   B have  moved  to   tA(tx)   and   ^ (tr)    (figure B.2). 

Figure B.2       Displacements  Conventions. 

A Taylor  expansion   is used   to  express     the  coordinates  of    B 

as  a   function of the  coordinates cf  A. 

or  w 

3    *j 

ith     d ^x^     x±  -    xL    and    d  xt =     xL   -     Xi    , 

(B.2) 

gives   : 

(d V)   =   (sJ^Hd °Xi) 
3 x. 

(B.3) 

{dfcx>      »     [ *X]   (d°x) (B.4) 

where    [ QX ] •   ( £*i I      > Cd^}   »   (i ^ci)    . {d °x»   -   (d°Xi) 
die) 

In  other  words,     aquation (B.4)     expresses how a   small   fiber 

defined    by    the  vector (d   °x}     at     t=0 has    rotated    and 
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extended  between  time 0  and  tit«  t     when  it   becomes     {dfcK}   . 

The   matrix  [QX]   is  called the  "deformation  gradient"   . 

The  new length     dS  of the fiber will   be   : 

t t    T      t (    dS)*     •       (d   x}      {d x} (     T  refers     to  the     transposed 

matrix) 

and  therefore 

<%S)*     =      ((Sx](d°x})T   <(JxHd0x}) 

^dsj*    =     [d°x}   cjjcj {d°X} (B.5) 

t t       T      t 
Cocl ~ Cox] Cox3 1S called the "Cauchy-Green deformation 
tensor". 

Notice that if the Cauchy-Green deformation tensor is iden- 

tity, equation (B.5) indicates that the length of any fiber 

will not vary. In other words, whenever rigid body motions 

are considered, the Cauchy Green deformation tensor is iden- 
tity   since the  fibers do not stretch. 

The principles of the finite element method will now 

be quickly recalled. Assume that the displacement (^) of 

any point of the body can be written as a combination of the 

displacements of S  selected   points called  "nodes"   : 

(u.)  = y h^u.)' 
k=l 

(B.6) 

Where the h are interpolation functions that depend only on 

the geometry of the body. In addition, the nodes are chosen 

so as to get a division into quadrilateral elements and it 

is assumed that the displacement of any point is only a 

function of the displacements of the corner nodes of the 
element  it  beLongs  to.  Then   equation   (B.6)   becomes 

4 

(u4) Z ^(ui )' (B.7) 
k=l 

Becalling that   (Ui)      is simply     (^j.)     -   (0xi)     gives: 
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(B.8) 

k=l 

The   deformation     matrix  [Q  X]  can    be  expressed    very  simply 
using the previous  equation   : 

3  Xj K31     3xj 
(B.9) 

Define now  the  "Green Lagrange"  strain tensor  by 

Eoe3     • 1/2    ([Jc] - [i]) (B. 10) 

»here [I] is the identity matrix. 
Prom the previous derivations, it can be observed that the 
Green Lagranga strain tensor is 3 for rigid body motions. 
The Green-Lagrange strain tensor refers to the body at time 
t with respect to the initial configuration. This is why it 
will   be   so   useful  in   dealing  with  large  deformations. 

Recall that the ultimate goal is to apply the prin- 
ciple of virtual work to the structure under study. In 
particular, having defined a new strain tensor, the relation 
giving the virtual Green-Lagrange strain tensor corre- 
sponding to a virtual displacement (5 u^ must be known. In 
the case of a linear problem, the virtual engineering strain 
tensor would be: 
«JB..  =   1/2    (     3ui+      3UJ) 

In the case of large displacements, the Green-Lagrange 
strain tensor should be used. It is shown in [Ref. 6] that 
the virtual Sreen Lagrange strain tensor corresponding to 
virtual  engineering   strains is: 

«o6« $ ^t«nn (B. 11) 

or: 
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fit«lj   •       3£i     3_*j «oeij (B. 12) 
3xm      Jxn 

Having defined a strain tensor which is invariant under 

rigid body notions, a stress tensor corresponding to the 

Green-Lagrar.ge   strain tensor needs to  be  defined. 

2.     Stress   Measures 

Starting  with    the  Cauchy     stress  tensor 

Piola-Kirchoff   stress tensor is  defined   : 

:he 

Osij  ~€£    t*w.     Tmntxjn (B.13) 

Where  % . fcp     are the   densities.of  the  material at   time  0  and 

t respectively   and        (   t*ij      ~ [ t* 3l     is     the  inverse  of  the 
deformation tensor   defined   previously. 

Eguation   B.13  can  be  easily   rewritten   in  equivalent   form: 

"•inn   =-g-     OximbSijtxjn (B.Vi) 

It  can also  be   shown   by    using  the  principle  of  mass  conser- 

vation  that  : 

oD     =   t0  det[ $X] (B. 15) 

D.       PRINCIPLE   OP   VIRTUAL   10RK 

The principle of virtual work of equation (B.1) is 

rewritten using the strain and stress tensors defined previ- 

ously in equations (B.12) and (B.14) : 

*1 tp   t 
•op   °X 0 %*   0*nk      8 »im ?»J§ 5 Eij     <1V (B. 16) 

\ 
or: 
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ani   using equation   (B.15) 

(B.17) 

*B     =       /        0Sij60eijdV (B. 18) 

Thus, the principle of virtual work has been simply 
expressed in terms of a new set of stress and strain 
tensors,   integrated  over the  original   volume     7   . 

E.      THE   INCREMENTAL   CONTINUUM   MECHANICS   EQUATIONS 

In this section, the principle of virtual work will be 

applied to the structure and the incremental formulation 

using the Piola-Kirchoff and Green-Lagrange tensors will be 

developed . Non linear terms will arise from the rather 

complicated definition of the strain tensor, but it must be 

pointed out tnac the new formulation provide the means for 

the  modelling of large deformations. 

Assume that the configuration of the body at time t is 

known, the configuration at time t + At must be determined. 

Writing   the  principle of  virtual  work  at  time  t+At  gives   : 

»At    A, 
Osij5 t+A (B. 19) 

t+*R     :   external  work at time t+At 
5 oEij   virtual  increment in G.L.   strain 
o^ij :   stress  state  at time t*tit 

Separating between the known terms that refer to the config- 
uration at time t and the unknown terms that are the incre- 
ments of stress and strain between time t and time t+At 
gives  : 
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t+At 
S    =       0   Sij    +    0 Si; and        e 0 ^ij + Oei; (B.20) 

oSij anäo-ij are    simply the   increments in    stress   and strain 

respectively. 
It       is    derived       in    [Ref.  6]      that      the    increment      in 

Green-Lagrange  strain oeij   is made of  a  linear part    oeijand a 
nonlinear onejii^ .     The term    linear   refers to the  increment 

in  displacement    u^   . 

Oeij     =      0%j *o\^      cr      5   QEij   =     s (      Oeg   +onij      ) (B.21) 

Osing  equation   (B.21)   in equation   (B. 19)   gives     : 

/ (^ij +   (ßij ( 5 (oeij •o'Uj ))   dV     =    **\ (B.22) 

Again,     separating  between   the  itnowa   and  unknown  terms  gives 

J   SsijsVijdv    4 Ss50ni:j     = ^fc -jg|sij6o^: (B.23) 

For small increments in displacements, equation (B.23) 

written at time t indicates that 5 0eij • 5oeij . This signi- 

fies that in equation (B.21) the aon linear term is negli- 

gible 

Then the    constitutive   law of    the material     detailed in 

chapter II  allows to  relate   stresses  and  strains: 

O^g   =   oQjEsCCij     ^s"   (fiijcs     Oeij (B. 214) 

and  B.23 becomes: 

r^dV= ^R (B. 25) 

• 
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The     right  hand    side    terms of    the     previous equation    are 

known: 
^y is the  linear increment   in  virtaal strain involving only 

known  terms 
Bsij   is known from the previous  time  step 
«•At 

ft     is the  work  of  external   prescribed virtual forces. 

The    left hand     side  of    B. 25  is    unknown since       o^and ^"^j 

involve the displacement from time t   to  time  t+At   . 

P.      PIIITE   ELEMENT   DISCRETIZATIOH 

Equation (B.25) will be discretized over the structure, 

using the finite element approximation defined in section 
B.9   . Let  N     be  the    number  of    nodes,     the    principle of 

virtual    work     will   be    invoked     N     times,     setting     a    unit 
displacement at   each  node in turn: 

5uk =   1     ,       Sll.«   0     ,k*j 

A system of equations-whose   unknowns   are  the  nodal  displace- 

ments    is     obtained    Let   ' (A u}     be    the  vector     of    unknown 

displacements,        {P}   be    the vector     of     nodal  point     forces 

equivalent  to  the internal   stresses. 

Then   equation   (B.25)   can be   rewritten  in matrix  form   : 

[ XH^U}   •   [%L]{&}      =    f^)      "   Ph (B. 26) 

[ QK ,] and [ QKJ.] are known from the material characteristics 

at time t and correspond respectively to a linear and nonli- 

near contribution. It is therefore possible to solve equa- 

tion (B.25) for {Au} . However, because of the assumption in 
equation (B.24), the exact solution might not be reached 

immediately. Furthermore, depending on the time step size, 
the  solution process  might  even    be  unstable!       In  any  case. 
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an iteration for solving aquation     (B.26)     must  be  performed 
until -he exact   solution is  reached  . 
A    widely  used     scheme is     the     "modified Newton     iteration" 
defined  by  the  following aquation  and  boundary conditions   : 

( CoKL3 • [OKNIJ ) {Auy-   =   t^H}    -   f*B }1-1 (B.27) 

and     fu)1' T«} » i^nf    » with the initial conditions : 

n>° - csi    and TF}° - e?\ 
itß)1 is the vector     of incremental aodal   point displacements 
at iteration i. 
tä-At { R}   is  the vector  of    applied  loads   (constant  in   the itera- 
tion) 
{ P}   is    the vector  of nodal  point  forces    equivalent to the 
stresses at time t*it,  iteration  i-1   . 

At the  first  iteration,   equation   (B.27)   reduces to   equa- 
tion   (B.26)   giving  an increment of displacement   [Au}   .     Then 
a better  approximation of   o^rs > ScT«       *-s  obtainad   .        QS^ is 

f&t. updated    to the    aew  state     of    strassas  and    becomes o=ij 
Equation   (B.27)      is   then  used  to   determine  the new   increment 
in  displacement     {Au}2  ,     and    so on   an til  the    increment in 

wtt t-fct      i 
displacement is  small enough,       so  that        {  R}   •      (     F  }     in 
equation   (B.27) 

G.   INCLOSIOS OF DYNAMIC FORCES 

If the loads are applied rapidly, inertia forces need to 
be considered and a truly dynamic problem has to be solved. 
Using d^lembart's principle, the elament inertia forces are 
simply included as part of the body forces. Let {u} be the 
vector of nodal accelerations and [ M ] be the mass matrix of 
tha system. Then the principle of virtual work is written in 
the   following way : 
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(cJiycAu} •   CO^{AU } 
tfr& ..      ts-At 

B     -CM} {AU}   -   P (B.28) 

Equation (B.28) represents a system of differential equa- 

tions of second order. If the nan linear term dJKNL ] were 

negligible, the solution could be obtained by standard 

procedures for solving differential equations with constant 
coefficients. However, the procedures proposed for the solu- 

tion of general systems of differential equations can become 

very expensive if the order of the matrices is large. 
Therefore, whenever the system is linear or nonlinear, seme 

effective methods for solving the equations governing the 

equilibrium are   required. 

1. Direct  Integration   Methods 

The essence of direct integration methods is based 

on two ideas. First, it is aimed to satisfy B.28 only at 

certain time intervals apart. Second, a variation of accel- 

eration velocities and displacements is assumed within each 

time step. The form of the assumption determines the accu- 

racy,   stability   and  cost of  each  method. 
In the following, assume that the initial conditions 

(displacements, accelerations, velocities) at time 0, 

denoted ( u , u , ü ) are known. la the solution, the time 

span under consideration, T , is subdivided into n equal 

time intervals At. Assuming that the solution is known at 

time t , the methods of getting the solution at time t*At 
will   be  investigated. 

2. Central   Difference  Method 

In the Central Difference method, a finite differ- 

ence  approximation  will give the  acceleration  at  time t : 

i     >At „t       tt&t    , J/   «  -   2 u  •     u ) (B.29) 
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writing    the    principle    of     virtual     work    at    tiae    t    ar.d 

substituting into eguation   (B.30)   gives  then: 

[«}{**)   + CoK   l^u}     =   {fcR} (B. 30) 

JLLBjf u} 
At" 

•   f   H)    "    ([OK]   -   2[S]/At2 ) {  u} 
that 

(B.31) 

The previous eguation gives the deformation at time t*Afc 

from   the characteristics of   the  system  at  time  t   . 

When [M] is diagonal, which is freguently the case 
for mass matrices, the solution at time t+ At does no- 

involve any triangular factorization of the matrix [M] , 

thus   leading to   more  efficient computations. 

The shortcoming in the use of the central difference 

method lies in the time step restriction: for stability, the 

time step size t must be smaller than a critical time step 

dtcrwhic^ is egual to 1 /, , where r is the smallest period 
of the finite element system. 

The central difference schäme is fairly easy to 

implement for the integration of a system of nor. linear 

differential eguations. However, because of the limitations 
of the time step , it might not ba suitable for cases when 

loads are varying at a slow   pace. 

3•     Implicit integration Schemes 

Since the interest of this study lies in central 

difference schemes, this section will be limited to a short 

description of the fundamentals of implicit time integration 

schemes. 
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Implicit time integration schemes use the principle 
of virtual work «ritten at time t+ At and not at time t as 
for   the central   difference   method  : 

[•]   (Ü)    •  [QK]   {U} =      {   R} (3.32) 

ts<\t 
Again,    using a     finite difference approximation  of     {u}   and 
replacing into  equation     (8.32)     enables to solve     for   { u} . 

t-h^t 
Since the formulation involves  the    rigidity  matrix fo K] and 

«•At 
tha   external work     {  R}   which  are both     unknown,     the system 
has  to    be solved in    a  similar    way  to  the     Modified Newton 
iteration that   was  detailed previously. 

Implicit time integration schemes are stable regard- 
less of the size of the time step used. However, if the time 
st9p size is too large, significant errors can be accumu- 
lated at each time  step,   leading  to unrealistic results. 

The reader will find more details on the various 
implicit method in C Ref • 61- Yet, it can pointed out that 
implicit methods are more tedious to implement. On the other 
hand, a larger time step can be used in the solution proce- 
dure, which can be of extreme importance when studying 
phenomena over  a  significant  period  of time. 
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AP PEN DU  C 

HÖH   TO  USE   THE   TRANSLATOR   EPSA-PATRAM-G 

This appendix is intended to explain in datail the use 

of EPSA/PATRAN-G post-processing facilities. It is divided 

in three sections that will deal successively with 1) the 

displaying of the original model ; 2)-he deformed geometry; 

3)   the  contour   plots  of  element and nodal  points   guantitias. 

A.      DISPLAYING   THE   OBIGINAL   MODEL 

When making an initial EPSA analysis on a particular 

structure, the geometry of the molel has to ba input into 

PATRAN-G. As explained in chapter III, all ths geometrical 

information is contained in a file FOS019.DAT that is 

created each time an EPSA run is «aie. The input of the 

original geometry must be made via tha neutral input mode of 

EPSA. The procedure, starting from the "logon" to PATRAN-G 

is the following  : 

- Selec-  the 30  option 

- Select the new data  file   option   (option   1) 

- Select  the neutral  system   (option  4) 

- Select  the input   mode   (option  H) 

- Input  the neutal   file  name  :   FOR019.DAT 

Tha   original geometry will   then  be displayed  on  the  screen 

It is often found convenient to have a perpective view 

of  the model under  study.     In that  :as9,   the  user  should  : 

- Issue the VIEW command 

- Select the rotation about   the absolute axes   (option  1) 

- Input an  angle of  rotation 

(23,-34,0    will give a very nice    view  but  any angle can be 

input) 
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- Issue    a  PLDT   command  to     have  ths   model  displayed     in  the 

new  axes. 

An  example  of the procedure   is  provided  on  table  VI. 

TABLE   71 

Pinite Eleaent   Model  input Procedure 

NODE?  1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. 5.END 
>4 
NEUTRAL FILE?  1.CREATE OUTPUT 2.INPUT MODEL 3.POST-PROCESSING 4.END 
>2 
INPUT NEUTRAL FILE NAME 
>FOR019.DAT 
DO YOU UISH TO OFFSET ANY NEUTRAL INPUT IDS? (Y/N) 
>N 
EPM 200 STEPS ,N0 STIFFENERS U-30. 
SHALL UE PROCEED WITH THE READING OF THIS FILE'' (Y/N) 

The PLOT command can be issued anytime to display the orig- 

inal  geometry on  the screen. 
When studying complex models, one does not want the 

element and node numbers to be printed along with the geom- 

etry of the structure. The command SET, LABS3, OFP followed 
by a PLOT will display the original geometry without any 

labels printed. 
When a model has been input into PATRAN-G, a data file 

PATRAN.DAT is created on the user's directory. When 

connecting  with    PATRAN-G at      a later    time,     the     user can 
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select the option "last data file " (option3) to have the 

original geometry displayed on the screen without having to 

input  the model  again. 

B. DEFORHED GEOBETHY 

On the second card of the PATRAN-G input deck, the user 

specifies the number of PATRAN-G displacement data file and 

the number of element results data file. Two non-zero inte- 

gers in free format must be placed at the end of the second 

card (section II in the user's manual) requesting the number 

of displacements and  of elements   files respectively. 

Assuming that the user has made a 200 steps run with 10 

output requests for PATRAN-G displacement files, ten (10) 

files FOR018.DAT will then be created at equal time inter- 

vals. The deformed geometry corresponding to time step 100 

will  therefore  be contained  in  FOR018.DAT;5. 

To display the deformed geometry corresponding to time 

step   100,  the user   should  issue  the  following  comm-   is: 

- RUN,DEF :  requests deformed geometry  option 

- Input  the name of  the displacements file   :FOR018.DAT  5 

- Select the PLOT option   (option   3) 

Select     the     undefcrmed   geometry     (2)        followed     by    the 

deformed    geometry   (3). An  example    of    the procedure    is 

provided on table 711. The undefsraed geometry   superposed 

with the deformed geometry will taen be displayed on the 

screen. 

C. POST-PBOCBSSIIG   OP   ANALTIS   RESULTS. 

Element-related quantities like von Hises stresses are 

contained in FOR016.DAT files, noial point quantities are 

stored in FOR018.DAT files. As described in chapter III, 

each     column of    those files    contains    a specific    quantity 
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TABLE   VII 

Deformed Geometry Procedure 
> 
MODE? 1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. S.END 
>RUN,C0N,C0L,4 
CURRENT FILE FOR NODAL RESULTS IS  FOR018.DAT 

NEUTRAL RESULTS FILE? l.NEU FILE 2.CURRENT FILE 
>1 
INPUT THE RESULTS FILE NAHE: 
>FOR018.DAT;5 
DATA UIDTH •    5 
FILE TITLE «EPM 800 STEPS 

7.5000129E-04 

DATA VALUES RANGE FROM -0.525E+00 TO 0.134E+00 
ASSIGNMENT?  1.AUTO 2.MANUAL 3.SEMI-AUTO  4.USE CURRENT LEUELS 5.END 
>4 
PREVIOUS CONTOUR LEVELS USED. 
MODE? 1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. S.END 
>RUN,HI,C 

(i.9. columa 31 -of FOR016.DAT contains the von Mises 

stresses). The reader-will refer to chapter III for the 

detailed organization of those  files. 
Again, assume a 200 time steps analysis, with 10 output 

requests for element results files. The user might want to 

display the contour plots of von Mises stresses at time step 

100   .     In  this  case  the   following  commands  should  be  input  : 

- HO», CON, COL, 31: tells PATRAN-G to look at column 31 

that  contains the von Mises   stresses. 

- Input  the  file  name      POR016.DAT 3 
- PATRAN-G will then as* for a color assignment (automatic, 

manual, semi-automatic, current levels used) that the user 

will  select according to his needs. 

The  contour  plots are then   ready  to  be  displayed   : 

- RON,   HI,   FR would   display   the color-filled  contour   plots 

- RUN,  HI,   CON  would  display the  contour   plots   (color lines) 
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The von Mises stresses are the lost useful element quan- 

tities to be displayed, but other element-related quantities 
detailed in chapter III like the x and y stresses in local 

or global coordinates could be displayed as well by looking 
at their corresponding column in the element results data 

file. 

Dealing with nodal point quantities, the displacement 

normal and the velocity normal to the shell are very mean- 
ingful quantities in an analysis. They are respectively 

stored in column U and 5 of the displacement results files 

FOR018.DAT   . 

& contour plot of the normal displacement at time step 100 
would  then   be obtained  via   the  following  commands: 

- RON, CON,  C0L,u (look  at column   4) 

- FOR018.DAT 5 (name of   the   file| 

- Color assignment   chosen 

- RON,   HI,   C        or        RON,   HI ,   FR 

Notice When the fluid-structure interaction is ON, the 

normal displacement contained in column U corresponds to 
£ä£S deformations, the rigid body contribution having been 

taken out. 

ill the element results processing is implemented in the 

routine NEOSTRE, all the nodal points processing is imple- 

mented in routine NEODISP. It should be pointed out that any 

modification to the capabilities of the translator (i.e. 
being able    to  display other    types  of quantities) can be 
made   by   modifying these  routines  only. 
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AP PEN DU   0 
LISTINGS 

This appendix contains the various files that constitute 

the translator module. The submodulä that displays the orig- 

inal geonetry is listed on the first four pages. It is 
imbedded in file PRANK.FOR. The subiodule that takes care of 

th9 post-processing facilities is imbedded in file DISP. FOR 

and is listed in the remaining pages. It has been mentioned 

previously that 2PSA had been slightly modified to accomo- 

data   color  graphics  capabilities. The  only  interaction  of 

EPSA with the translator occurs via subroutine calls. All 

the "calls" occur in COMPOTE (for post-processing) and 

REPORT     (for the    original     geometry) . A  labelled     COMMON 

called FRANK has been created and is defined in the routine 

AAA as reguirad by EPSA. The reguests for PATRAN-G outputs 

are echoed in the EPSA output file, all the modifications 

for that purpose having been made in routine READIN. The 

user must be aware that the size of blank COMMON array A has 

been increased to store the deflections in x, y, z direc- 
tions  instead of only the z   direction  previously. 
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subroutine or»Ii« 
di iieos ijn 4(1) 
common i a ( 1 ) 
eauiwalence fia(I).a(l}) 
common/ssize/ ibq(l),nqj,neltot.nlbd,nload,nbrect» 

1 noauadi isheet. riorotSr    nsotj, njtiots» nvots. nhDts. 
2 nsstvo» nnj, nntot» laaso» liau-t» lbcalc 
common /coara/   nsteDS. noeg. lend/ nsheet 
common /stab / ibt( 1 )»jssize>isoar> iveIo. jstre»j»mas»iielm#jbmat, 

1 jllod>iloCD»JDret»ilhis>is'rn,iforc»j»loc<jnai.jnni(jnabeg» 
2 j1 side 

10 

1 1 

12 

common/'rank/nfntot. I lu 
Cd"«ON/TITRE/NTITLE<80) 
CHARACTER'S 'iUFF 
CHARACTER'S TITLE 
CHARACTER*« TIM 
CHARACTER«'' VER 

this routine comoute» new number of nodal ooints 
for any given sheet 

KJSJNQB 
ifntOt 1 

I 1t voe = 
1 Ike»l 
1 Ii v = 0 
I Iid = 0 
MnlsO 
Iln2 = 0 
rInisO 
1 ln<* = 0 
IIn5=0 
wri te(I 
format( 
»cited 
format( 

EG-JNNI 
nntot-IMJNNI)-I A(JNOBEO-I)-2«(KJ-2) 
25 

lu,10)    I Itvoe.Ilid.lliv.llkc.ltnl,Hn2,lIn5,l lna,lInS 
i 2, 8 i 8 ) 
lu.ll)    (NTITLE(I),1=1.80) 
80   Al ) 

taking   zart   of   second   oaoet 

1 I tyoe=2o 
1 lkc = l 
1 Io JsnfntOt 
11n2=neltot 
writeMlu.10)    11tyoe,nid,niv.llkc»11nl,lln2,lln3,llnU,lln5 
call   datefBUFF) 
«rite(Ilu»12)   8UFF 
format(A,Jx.'17:i2:0i>,sx, • l .«• I 
return 
end 

Subroutine ihcorin 
di mens i on A(1) 
common i a(1) 
eauivalence (ia(l).a(l)) 
Common/ssize/ iba(l).n<ij.neltOf.nIbd.nload.noreCt. 

1 noauad. isheet. nornts. not», nstrots» nvots. nhots. 
2 nsstvo. iiii nntot» Igdso. Ifiuli lbcalc 
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common /coara/ nsteoii noe^i nenrl, nsheet 
co»«o" /stab / ibtfl),jssi?e,jsoar.jvelo«isfre»j»mas.jieIm,jbmat» 

1 jllcd»j'odD»joret»ilhis»jstrn,iforc»i"loc»inqi,jnni,jnaoeg» 
2 jI side 

common/franic/nfntot* I I u 

this routine will -rite ts* 
element on neutral Hie 

1 1 type = 2 
I H»c = 2 
1lnod=3 
11iv=« 
LLNl=a 
ILN2=0 
LLN3=0 
LLNUsO 
LLNSsO 
LLC0NF=0 
LLPIO=0 
LLCEI=0 
THET1=0. 
TMET2=0. 
THET3S0. 

INITIALIZATION DONE 

norevsO 
II el - jnni-j nai 

element corner nodes of each 

do 200 k«l, 1 lei 
?1ron=IA(jnoi• «-() 

:  number of elts in each row 
do 100 3 = 1,11 row 
le1=I*(jnabeg+K-l)+j-l 
nlel1 = j tnorev 
nlel2= j + 1»norev 
nleI 3s jtl»norev*1I row* 1 
nlel<*=j*norev*lI row*I 

: readv to dfsDlay oac«et 

11idsLEL 
writedlu.80) IItyoe.11 id.11i«,11kc.LLN1,LLN2,LLN3,LLN«,LLN5 

80 format(i2.8i8) 
t.ritedlu.81) 1 1 nod.LLCONF , LL°I0, LLCE I, THET1, THET2, THET3 

81 format(i8,3i8,3e16.9) 
wri te(llu»82) nl»tl.nlel2,nlel3.nlel4 

82 format C10*»») 
100      continue 

norevSnorey•I 1row*l 
200  continue 

return 
end 

subroutine sheetf 
di mensi on A(l ) 
Common i a(1) 
eoui valence CiaCl).a(M) 
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Common/ssiie/ ioq(l)»naj,neltot»nlö-»,nloaa,nbrect, 

1 noquad» isheet, norots, iiots, njtrotli nvots. nhots» 
2 nsstvo» nnj, nntot. IJdso, liqud» Ibcalc 
common /CDtrg/ nsteos, nbea» nend, nsneet 
common /star>   / ifc t (1 )» j ssi ze, j soar, j vel o» j st re, j «mas, j i el m, j bmat , 

1 i '1 od • i 1 odo , ioret,j'his>jstrn,jforc,j>loc,jnot,jnni,jnqoe<9< 
2 iI side 

common/ fr an ic/nfntot, I lu 
character»l qtyoe 

renumbers the nodes, ehanqe coordinates, disolav oacket 1 

lltvoe=l 
'Iid=0 
11iv = 0 
1lkc = 2 
1lnlsö 
1ln2 = 0 
1ln}=0 
1 InUsO 
I ln5 = 0 
ncoun=0 
1 ldof=6 
IllefM 
qtvoe=*G' 
1leonf=0 
Ilcid=0 
ISPC1=0 
LSPC2=0 
LSPC3=0 
LSPC«=0 
LSPCSsO 
LSPCb=0 

INITIALIZATION DONE 

k}-inobeq")nni 
krowsk i-2 
do 200 jsl,krow 

looo on new nb. of row 

ncounsncOun*I»(inni • i "1 ) 
1 lot = IA(inni »j-D-2 
do 100 1=1.Hot 

11i is II id»1 
*lloc = A(ncoun«?*j»loe*2»l ) 
vlloe = A(ncoun*2f'i«loc+2«lti) 

skio   first   node   of   row 

xl 1ocs0. 
if    (A(jvelo-2).ne.O.)    then 
reouro=l./A(/velo-2) 
theta=«lloc'rcouro 
»I!oesreourb*sin(th*ta) 
jllocsrcourb*co»(th»ta)-rcourt 
«ndi / 

if (a(ivelo-1).ne.O.) then 
rcouro81. 'a(i welo-1) 
thetasvlloe/rcouro 
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vl locs',couro»iifi(theH) 
zllocsfCouro»cos(thet))-reourB 
endi f 

70 

80 

81 

82 
100 
200 

80 

if((a(ivelo-l).ne.O.).and.(a(ivelo-2).ne.O.)) then 
wri te(1tu#70) 
format('error,two Curvatures «n» non zero') 

end* * 

ready to disolav oaeket 

Mrite(llu,30) )1tvoe/1 lid,Iliy,like,1 I«1,1\ni,\Inj,llna,lln5 
format(i 2,8i 8) 

»rite('1u,81) «11oc,v11oe,z11oc 
format(3el6.°) 

-rltedlu,82) 11ief,qtyoe.11dof,11conf,1lcid,LSPCl ,LSPC2. 
1  LSPCJ LSPC4.LSPCS.LSPC6 

format(l!,al,3iS,2«,6iIl 
cant i"ue 

cont1nul 
return 

end 

subroutine enoneu 
commor'/franic/nfnfof# 1 Ju 
I 1 tyoe = 9<» 
1113=0 
I 1 i v - u 
I 1kc = l 
vrite(llu,80) 11tyoe,llid.lliv.11kc 
format(i2,Ji8) 
return 
end 
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NSHEET , N28D 
NRELAX, ALPHA 

N3BD1 

SUBROUTINE NEUDISP(DEFL,VELU> 
DIMENSION 4(1) 
COMMON IA(1) 
EQUIVALENCE   (IK!), A(l) ) 
OIMENSION DEFLU).VELO(l) 
COMMON /CPARA/ NSTEPS . N8EG . NEUD   , 

I   N38D2, INTRVL, OELT, NHTOT, 'UOIN, 
s LEN sax 
COMMON / SSIZE / I9G(1),N0J,NELT0T,NIBD,NL0A0,N8RECT. 

1 NBOUAO, ISMEET, NPRPTS. NSPTS, NSTRPTS, NVPTS, NHPTS, 
2 NSSTrP, NNJ, NNTQT, LGDSP, LIQUO, LBCALC 

COMMON /STAB / IBTn),JSSIZE,JSP4R,JVEL0.JSTRE,JXMAS,JIELM,JB«AT, 
t   JLlBO.JLODP,JPRET,JLHIS,JSTRN.JF0RC,JXL0C,.;N0I,JNNI,JNQ8EG, 
$   JLSIDE.JIEL"CL,JSTIF,JDEFL,JFORLG, 
2   JIFPAfl,JFLPAR,JXCOORD,JYCOORD.JOEL TAX,JDELTAr,JVM4,JSEFX, 
J   JFLUFR, JPRINC, JVELRAO, JGENFR,JPRES,JCSEP 
COMMON/CIO/ NIN,NOUT,NTHIST,NCORT,MCORT,NTPLOT,.NV*A,ITITLE(20) 
COMMON/FRANK/NFNTOT,LLU,LLN,LLS,NOPLTS,NSPLTS 
C0MM0N/TITRE/NTITLEC80) 
COMMO^/CDELT/ISTEP.TIME 

REPORT 
8L»NC 2 
8LANC J 
BLANC a 

CPARA 2 
CPARA J 
MSPARA 3 
SSIZE 2 
SSIZE 3 
SSIZE u 
REPORT 8 
STAB 2 
STAB 3 
STAB 4 
STAB 5 
STAB 6 

10 

INTEGER NSU8T1f80).VSU8T2(80) 

KJsJNQ8EG-JNNI 
NFNTOT=NNTOT-IA(JNNI)-IA(JNQBEG-1)-2*(KJ-2) 
LLUS19 
LLN=18 
LLM=|7 
OEFMAXsO. 
MAXNODsVFNTOT 
NwIDTHsS 
NOMAXSO 
LLID=0 
NCOUN=0 
KROHs^J-2 

00 10 J=l,80 
NSUBTKJJsO 
NSU8T2(J)sO 

PUT THE TIME STEP ON FIRST SUBTITLE: 

CLOSE(UNITiLLM) 
OPf.N(UNIT=LLM,STATUS='NE*' ) 
rfRireaL".") Ti-e 
CLOSE (JNIT=LLM) 
R£A0(LLM,99) (NSU8U(J),Jsl,80) 
CL0SE(UNIT*LLM) 
OPEN(UNITsLLM,STATUS*'OLD') 
OPEN ( UNI T=LLN, FORMS'UNFORMATTED', STATUS»'NEW) 

KROM IS THE NEW NUMB. OF ROMS ,KJ IS THE OLO 
NCOUN COUNTS NOOAL PTS IN EPS*, LLID COUNTS FOR ACTUAL MODEL 
NUMR COUNTS NODAL PTS IN EPSA 

FIRST LOOP TO GET MAX. DEFORMATION AND NOOE NUMBER 

00 200 Jst.KROH 
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c 
c 
c 

100 
200 

90 
"5 

91 
•»9 

c 
c 
c 

NCOJN=NCOUN+IA( JflNIt J-l ) 
LLPT = U(JNNI*J)-2 

LLPT IS NUMB. OF POINTS (FOR PATRAN) IN EACH 90« 
*£ TAKE THE RIGID BODY MOTION OUT 9Y SUBTRACTING THE v AND fl 
DISPLACEMENTS AT ENOBLOCK AT EACH NODAL POI'IT 
NC0UNt2 IS THE POINT NB. (EPSA) FOR END9L0CK 

RBY=0EFLO»(NC0UNf2)-t) 
R8Z=0EFL(3*(NC0UN*2)) 
IF (LIQUD.EQ.O)  THEN 
R8Y=0. 
RBZsO. 
ENOIF 
00 100 L=1.LLPT 
LLID=LLID+1 
NUMR=NCOUNfL*t 

DX=0EFL(3»NIJMR-2) 
0Y=DEFL(3*NUMR-1)-RBY 
DZ=0EFLC3»NU«R)-RBZ 

IS SHELL CURVED,CHANGE COORDINATES 

IF((A(JVELO-1).NE.O.).OR.(A(JVELO-2).NE.O.)) THEN 
CALL CHCO0RD(NUMR,Dx,DY,DZ) 
ENDIF 
D0=AMAXl(A8S(0X),A8S(DY),ABSCDZn 
IF(ABS(DEFMAX).LT.DD) THEN 
ND^AXsLLID 
DEF«AXr0D 
rF(ABSCAMINH0X,Dr,0Z)).EJ.0O) THEN 

DEF«AX=-DEF«AX 
ENOIF 

«E CHECKED  IF OEFMAX *AS NEG. 

ENOIF 
CONTINUE 

CONTINUE 
OK FOR FIRST CARD 

WRITE(LLN) (NTITLEfI),I=l,80),NFNT0T,MAXNOD,DEFMAX,NDMAX, 
1 NWIDTH 
write(LLM,90) TITLE,NFNTOT,MAXNOD,DEFMAX,NOMAX,NW IDTH 
FORMAT(A,218,El 6.9,218) 
FORMAT(20A|,218,El 6.9,218) 
HRITE(LLN) (NSUBTl(I),t=l,80) 
WRITE(LLN) (NSUBT2(I),I=1,80) 
*RITE(LLM,91) 
FORMATCPINE' ) 
FORMAT(SOAl) 
LLID=0 
NCOUN=0 

SECOND LOOP TO PICK UP DEFLECTION AT EACH NODE (OF PATRAN MOOED 

DO 400 J*!,KROH 
NCO'jNaNCOUN»IA(JNNI»J-l ) 
LLPT«IA(JNNI+J)-2 

TAKE OUT RIGID BODY MOTION, R8X,RRZ DISPLACEMENTS AT END BLOCKS 
ASUMED TO REPRESENT SIGIO BOOY «OTIONS 

100 
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RBY=OEFL(3«(NC0UN»2)-l) 
3BZ=0EFL( 3«(NCOljN*2)) 
IF (LIJU0.EQ.1) THEN 
RBYsO. 
RBZ=0. 
ENOIF 

C IF NO FLUIO OPTION 00 "JOT SUBTACT RIGID BODY CONTRIBUTION 
00 JOO LSI/LLPT 
LLIOsLLID»l 
NUMRsNCOUN + LM 
OX=OEFL(3*NUMR-2) 
OYsOEFL( J'NU^R-n-RBY 
DZ=OEFLf3*NUMR)-R8Z 
OZLOCsOZ 
VELZ=VEL0(3*NUMR) 

IF((4fJVELO-l).NE.0.).OR.(A(JVELO-2).NE.0.)) THEN 
CALL CHCOORD(NUMR,DX,DY,DZ) 
ENOIF 

/»RITE(LLN) LLID,DX,DY,DZ,DZ10C,VELZ 
*RITECLLM,92) LLID.DX,DY,0Z,DZL0C,VELZ 

300 CONTINUE 
400      CONTINUE 

C CLOSE FILE OPENEO ON UNIT LLN 
CALL CLOSECLLN) 

<»2   F0RMAT(I8,5El6.9) 
RETURN 
ENO 

C 
C 
C 

SUBROUTINE CHCOORDCN,X,Y,Z) 
DIMENSION A(l) 
COMMON IA(1) 
EQUIVALENCE (IA(1), A(l) ) 
COMMON /CPARA/ NSTEPS , NBEG , NENO , NSHEET , N2B0 , N3BD1 . 

1   N3BD2. INTRVL, OELT, NHTQT, NJOIN, NRELAX, ALPHA 
i   LEN SBX 
COMMON / SSIZE / IBGd),N0J.NELT0T,NI9D.NL0AD,N8RECT, 

1 NBQUAO, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NHPTS, 
2 NSSTYP, NNJ, NNTOT, LGDSP, LIO'JO, LBCALC 

C 
COMMON /STAB / IBTf1),JSSIZE,JSPAR,JVELO.JSTRE,J»"AS,JIEL",JBMAT, 

1 JL1B0,JL00P,JPRET,JLHIS,JSTPN,JF0RC,JXL0C,JNQI.JNNI,JNQ8EG» 
S   JLSIDE,JIELMCL#JSTIF,JDEPL,JFORLG, 
2 JIFPAR,JFLPAR,JXCOOPO,JYCOORO,JOELTAX.JOELTAY,JVMA,JSEFX, 
3 JFLUFR, JPRINC, JVELRAD, JGENFR,JPRES,JCSEP 
COMMON/CIO/ NIN,NOUT,NTHI3T.NCORT,MC0RT,NTPL0T,NVMA,ITITLE(20) 
COM«ON/FRANK/NFNTOT,LLU,LLN.LLS,NDPLTS,NSPLTS 
DIMENSION XMATC3.3) 
00 10 1*1,3 
00 10 J = l,3 
XMAT(I,J)sO. 

10  CONTINUE 
C 
C 
c 
c 
c 
c 
c 

THIS ROUTINE CHANGES THE OISPL. 
IN A GLOBAL RECTANGULAR SYSTEM 

OF NOOAL PT. N(FOR EPSA) 

REPORT 2 
BLANC 2 
BLANC 3 
BLANC 4 
CPARA 2 
CPARA 3 
MSPARA 3 
SSIZE 2 
SSIZE 3 
SSIZE 4 
REPORT 8 
STAB 2 
STAB 3 
STAB 4 
STAB 5 
STAB b 

IF CURVATURE IN Y OIR. IS NON ZERO »CALCULATE 
THE ROTATION MATRIX AT EACH POINT 
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C 
c 
c 

c 
c 
c 
c 

»COURT»!./»(JvELJ-1> 
TtaCTAlM(J*LQC*«*'**tf/*COU*t 
<M«r<1,11x1. 
xMAr(2,2)sC0S<r«ETA|) 
XMAT(2,J)sSlNCT«£T»l) 
xM*TfJ,i)««»*r<i,*) 
•«MkTlS»S)«*l • •"'«AT 12. J) 
CALL PROD(«M»T,X, r ,Z) 

ENOIF 

IF CURVATURE IV * DIRECTION IS HOU   ZERO: 

IF (&(JVELO-2).NE.O.) THEN 
00 20 1*1,5 
00 20 J = 1 . 5 
XM*T(I,J)*0. 

CONTINUE 
RCOuRX=l./A(JVELO-2) 
THETA2SA(JXL0C*2*N-2)/RC0IJRX 

XMAT(2.2)=l. 
XMAT(l,l)=C0S(THETA2) 
XM»T(3,3)=XMATC1,I) 
XMAT(3,!)=-!.«SIN(TUETA2) 
XMATd, J)=SIN(THETA2) 
CALL PROD(XMAT,X,Y,Z) 

ENOIF 
RETURN 
ENO 

SUBROUTINE.PRODC*MAT,X,Y,Z) 
OIMENSION XMATC3.3) 

THIS ROUTINE OOES THE MATRIX PRODUCT XMAT«(X,Y,Z) 

XlsX 
Y1=V 
Z1 = Z 
X=XMAT(l,l)*XltXMAT(l,2)*rt+XMAT(l,3)»Zl 
y = xMAT(2, i)#*i tXMAT(2/2)»Yl*X««AT{2,3)«Zl 
Z = XMAT(3,l)»Xt*XMATC3,2)*YUXMAT(3. 3)»Z1 
RETURN 
END 

SUBROUTINE PLOTDISP(DEFL,VELO) 
DIMENSION DEFLCn.VELOd) 
COMMON/COELT/ISTEP.TIME 
COMMON /CPARA/ NSTEPS , N8EG , NEND , NSHEET , N2BD , N3BD1 

1   N3802, INTRVL» OELT, NHTOT, NJOIN, NRELAX, ALPHA 
S LEN SBX 
COMMON/FRANK/NFNTOT,LLU.LLN,LLS.NOPLTS,NSPLTS 

CPARA 2 
CPARA 3 
MSPARA 3 

CHECKS IF OUTPUT FOR PATRAN IS REQUESTED BY USER IF YES CALL 
NEUDISP 

IF (TIME.EO.DELT) KDISPsl 
TIMEI=FLOAT(NSTEPS)/FLOAT(NDPLTS1 
TIMEC=KOISP»TIMEl 
ITIME=J^INT(TIM£C) 
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TIM£C = T [«£/( I n«E«0£LT) 
E<(DTI«=NSTEt,S«DfcLT 
T£ST=A8S<TI*EC-JNIMT(Tr<ECl) 
IF(tTEST.LE. 0.00001).OB.(Tr*E.EQ.END TIM;j THEM 

CALL NEJDISP(DEFL,VELO) 
KDISP=KDISP*1 
ENOIF 
RETURN 
END 

SUBROUTINE PLOTSTRE(STRE) 
DIMENSION STBE(l) 
COMMON/COELT/ISTER,TIM£ 
COMMON /CPARA/ NSTEPS , 

1 N3802, INTRVL, OELT, 
S LEN SBX 
COMMON/FRANK/NFNTOT,LLU,LLN,LLS,NOPLTS,NSRLTS 

N8EG , NE'JO , 
NHTOT, NJOtN, 

NSHEET , 
NRELAX, 

N2Ö0 
ALPHA 

N3601 CPARA 2 
CPARA 3 
MSPARA 3 

CHECKS IF OUTPUT FOR PATRAN IS REQUESTED BY USER IF YES CALL 
NEUOISP 

IF (TIME.EQ.OELT) KSTREsl 
TIME I»FLOAT(NSTEPS)/FLOAT(NSPLTSJ 
TIM£C=*STRE*TIMEI 
ITIM£SJNINT(TIMEC) 
TIMEC=TIME/(iTiM£.OELT) 
ENDTIMaNSTEPS*OELT 
TEST = A8SUIMEC-JNINT(TIMEC)) 
IF((TEST.LE.0.00001).OR.<TIVE.EQ.ENDTIM)) THEN 
CALL NE'JSTRE(STKE) 
KSTRE=KSTR£tl 
ENOfF 
RETURN 
END 

I 

SUBROUTINE NEUSTBE(STRE) 
DIMENSION A(l) 
COMMON IA(1) 
EQUIVALENCE (IAU), A(l) ) 
DIMENSION DISP(10),STRA(10),DSTRE(101,DS(S),VEL(2) 
OIMENSION STPE(J) 
COMMON /CPARA/ NSTEPS , N8EG , NEND , NSHEET , N2ÜD , N3BD1 , 

1   N3BD2, INTRVL, OELT, NHTOT, NJOIN, NRELAX, ALPHA 
%   LEN S8X 
COMMON / SSIZE / IBG<n,NQJ,NELTOT,NlBD,NLOAO,NBRECT, 

1 NBQUAD, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NHPTS, 
2 NSSTTP, NNJ, NNTOT, LGDSP, LIQUD» LBCALC 

COMMON /STAB / I8T(l),JSSrr£,JSP4R,JVEL0,JSTRE,JXMAS,JIELM,JBMAT, 
1 JLlBD,JL00P»JP«eT,JLHlS,JSTRN,JFORC,JXL0C,JNQI,JNNI,JNOBEG, 
S   JLSI0E,JIELMCL,JSTIF,JDEFL,JFORLG, 
2 JIFPAR,JFLPAR,JXCOORD,JVCOORU,JOELTAX,JDELTAY,JVMA,JSEFX, 
3 JFLUFR, JPRINC, JVELRAO, JGENFR,JPRES,JCSEP 
COMMON/CIO/ NIN,NOUT,NTHIST,NCORT,MCORT,NTPLOT,NVMA,I TITLE(20) 
COMMON/FRANK/NFNTOT,LLU,LLN,LLS,NOPLTS,NSPLTS 
COMMON/TIT BE/NT ITLE(SO) 
COMMON/COELT/ISTEP,TIME 

REPORT 2 
8LANC 2 
8LANC 3 
BLANC 4 

CPARA 2 
CPARA 3 
MSPARA 3 
SSIZE 2 
SSIZE 3 
SSIZE 1 
REPORT 8 
STAB 2 
STAB 3 
STA8 u 
STAB 5 
STAB 6 
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10 
C TAK 
C 

301 

C 
c 
c WE 
c 

C0MMON/SPARA/HEG(l).E.GNU .»HO.SGYLD, TH ICK , CURV (2) 
INTEGER  NSUBTl(80),NSU8T2(80) 
NwIDTMsJl 
LLSslb 
LLZ=15 

DO 10 Jst.SO 
Nsuer2(j)=o 

E CARE OF THE 2ND TITLE , INOICAT. TIM£ STEP 

CLOSE(UNIT=LLZ) 
OPENtUNITiULZ.STATUSs'NE«') 
wRITEULZ,«) TIME 
CLOSE(UNITsLLZ) 
REA0(LLZ,801) (NSU8TKI),Isl,80) 
CLOSE(UNlT=LLZ) 
OPEN(UNIT=LLZ,STATUS='OLD*) 
FORMAT(SOAl) 
OPEN(UN ITsLLS,FORM='UNFORMATTED',STATUSs'NEW*) 

ARE GOING TO DISPLAY THE FIRST THREE RECORDS (TITLES) 

WRITE(LLS) (NTITLE(I),I=t.30),NWtDTH 
WRITE(LLS) (NSU8T1(I),I=1.80) 
WRITE(LLS) (NSUBT2(I),1=1,80) 

»E ARE GOING TO SCAN ALL ELEMENTS AS IN SHCONN, 
GET THE STRESSES PERFORM ROTATION IF NECESSARY 
LLEL: NUM. OF ROWS ELTS; LLID:ELT NUMBER 
NPREV: NODE NUM.(FOR EPSA) OF LAST POINT OF ROW JUST 
8EL0W THE ELEMENT ROW K; LLROW: NUM. OF ELTS IN EACH ROW 

NPREVsO 
IA ELTS »KFOR NODES) »2 ARTIFICIAL NODES FOR NPREV 

NSHAPE-U 
LLEL=JNNI-JNQI 

00 200 Ksl.LLEL 

LLROWsIA(JNOI»K-l) 
NPREVsNPREV»LLROW«J 

00 100 Jsl,LLROW 
LLID=IA(JNQ8EG»K-l)»J-l 
OS(1)*STRE(0»(LLID-1)»1) 
DS(2)sSTRE(9«(LLI0-l)»2) 
OS(3)sO. 

C 0S(U,5) WILL oE THE STRESSES IN LOCAL COORD. 
DS(4)=0S(1) 
DS(S)sDS(2) 

C VON MISES AT TOP AND BOTTOM OF SHELL: 
T0XY»STRE(9.(LLI0-1)»3) 
OSXsSTRE(«»»(LLID-l)»U) 
DSY3STRE(<»*(LLID-l)»S) 
DSX30SX*6./THICK 
DSYsOSY«6./THICK 
OSX|sOS(l)»OSX 
03Y1=0S(2)»03Y 
OSX2»OS(1)-OSX 
D3Y2sOS(2)-OSY 

VON MISES CALCULATIONS MODIFIED AFTERWARDS FOR M£M8.»BENDING STRESS 
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NO SHEAR AT TOP OF SHELL,GET STRESSES AT TOP »NO BOTTOM »NO TAKE 
MAX. VALUE 

TOP: 
SIG«!=OSXl 
SIGM2=OSYl 
V0NMlsSQRT(SIGMl*SIGMl-SIGMl.SIGM2+SIGM2«SIGM2) 

90TTOM: 
SIGM1S0SX2 
SIGM2=OSY2 
VONM2sSQRT(SIGMl.SIGMl-SIGMl«SIG«2*SIGMa.SIGM2) 

VONM=AMAXHVONMt,VONM2) 
O.K. FOR VON MISES CVONM) 
IS THE SHELL CURVED, NLELI'S ARE NODES SURROUNOING ELT- CEPSA) 

IF(CA(JVELO-1).NE.O.).3R.CA(JVELO-2).NE.O.)) THEN 
NLELl=JtNPREV»l 
NL£L2=J+NPREV+2 
NlEL3=J*l+NPREVtLLR0w+l»2 
NLEL<»=J*NPREV»LLRQWtl»2 
X5(A(JXL0C»2«NLELl-2)+A(JXL0C+2*NLEL2-2))/«. 
XsX*(A(JXL0C*2*NL£L3-2)tA(JXL0C*2*NLELU-2n/«. 
Y = (A(JXL0C»2«NLEH-l)»A(JXL0C*-2*NLEL2-l))/a. 
YsY MA(JXL0C*a«NLELJ-l)*ACJXL0O2«NLEL«-t))/1. 
CALL CHELEM(X,Y,OS) 
ENOIF 

I     READY TO DISPLAY RECORD 

KRITE(LLS) LLID,NSHAPE,(OISP(I),I=l,lO), 
1 (STRA(I),I=l.10).DSTREU),DSCS).0SC6), 
2 OSTREC«),(DSU).1 = 1.3). 
3 (DSTRE(I),Is8,10),VONM 

: »RITEUS.80) LLID.NSHAPE, CDSCI).1=1,5)»VONM 
100     CONTINUE 
200  CONTINUE 

CALL CLOSE(LLS) 
80   F0RMAT(2I<I,6E15.8) 

RETURN 
END 

NSHEET , N280 
NRELAX, ALPHA 

N5801 

SUBROUTINE CHELEM(X,Y,OS) 
DIMENSION A(l) 
COMMON IA(1) 
EQUIVALENCE CIACI), A(t) ) 
COMMON /CPARA/ NSTEPS » N8EG , NENO , 

1 N3BD2, INTRVL, DELT, NHTOT, NJOT.N, 
S LEN S8X 
COMMON / SSIZE / I8GO),NQJ,NELr0T.N»8D,NL0AD,N6RECT, 

1 NBCUAO, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NHPTS, 
2 NS3TYP, NNJ, NNTOT, LGDSP, LIQUO, LBCALC 

COMMON /STAB / IBTf1),J5SJZE,J3PAR,JVELO,JSTRE,JXMAS,JIELM,JBMAT, 
1   JL18D.JL00P,JPRET.JLHIS,JSTRN,JFORC.JXLOC,JNOI,JNNI,JNOBEG, 
1 JLSIOE.JIELMCL.JSTIF.JOEFL.JFORLG. 
2 JIFPAR.JFLPAR.JXCOORO.JYCOORO,JOEL TAX,JOEL TAT,JVMA.JSEFX, 
3 JFLUF«, JPRINC, JVELRAD, JGENFR,JPRES,JCSEP 
DIMENSION X*AT(3,3) 
DIMENSION 0SC35 

REPORT 
BLANC 
8LANC 
BLANC 
CPARA 
CPARA 
MSPARA 3 
SSIZE 2 
SSIZE 3 
SSIZE a 
REPORT 8 
STAB 2 
STAB 3 
STAB 4 
STAB 5 
STAB   6 
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10 

00 t0 1=1,3 
00 10 J=l.5 
XMAH I, ])=0. 
CONTINUE 

THIS «OUTINE CHANGES THE STRESSE IN AN ELEMENT INTO A 

IN A GLOBAL RECTANGULAR SYSTE* .GIVEN LOCAL CQORO. OF 
CENTROIO *,f 

IF CURVATURE IN T OIR. IS NON ZERO .CALCULATE 
THE ROTATION MATRIX AT EACH POINT 

IF (ACJVEL0-1J.NE.O.) THEW 
BCOimsl ./A(JVEL0-1 ) 
TH£TA1=Y/RC0URY 

XMAT(t,I)«!. 
XMAT(2,2)=C0S(THETA1) 
XWATC2,J)=SIN(THETA1) 
XMAT(3,3)=XMAT(2,2) 
XMAT(J,2)=-|.»XMATC2,3) 
CALL PRODCXMAT,OS(1),DS(2),DS(3)) 

ENOIF 
r 

: IF CURVATURE IN X DIRECTION IS NON ZERO: 
IF fA(JVELO-2).NE.O.) THEN 

DO 20 1=1,3 
DO 20 J»l,3 
XMATCI,J)=0. 

20    CONTINUE 
RC0URX=l./A{JVEL0-2) 
THETA2=X/RC0URX 
XMAT(2,2)=l. 
XMATC1,1)=C0S(THETA2) 
XMAT(?,3)=XMAT(l,l) 
XMATC3,1)=-l.»SIN(THETA2) 
XMATd, J)=SIN(THETA2) 
CALL PROO{XMAT,DS(l),OSf2),DS(3)) 

ENOIF 
RETURN 
END 
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